S. Gundry, Jianmin Zou, Janusz Kusyk, M. U. Uyar, C. Sahin
{"title":"自主移动网络节点分布的容错仿生拓扑控制机制","authors":"S. Gundry, Jianmin Zou, Janusz Kusyk, M. U. Uyar, C. Sahin","doi":"10.1109/MILCOM.2012.6415743","DOIUrl":null,"url":null,"abstract":"We introduce a fault tolerant bio-inspired topolog-ical control mechanism (TCM-Y) for the evolutionary decision making process of autonomous mobile nodes that adaptively adjust their spatial configuration in MANETs. TCM-Y is based on differential evolution and maintains a user-defined minimum connectivity for each node with its near neighbors. TCM-Y, therefore, provides a topology control mechanism which is fault tolerant with regards to network connectivity that each mobile node is required to maintain. In its fitness calculations, TCM-Y uses the Yao graph structure to enforce a user-defined minimum number of neighbors while obtaining uniform network topology. The effectiveness of TCM-Y is evaluated by comparing it with our differential evolution based topology mechanism (TCM-DE) that uses virtual forces from neighbors in its fitness function. Experimental results obtained from simulation software show that TCM-Y performs well with respect to normalized area coverage, the average connectivity, and the minimum connectivity achieved by mobile nodes. Simulation experiments demonstrate that TCM-Y generates encouraging results for uniform distribution of mobile nodes over unknown terrains while maintaining a user-defined minimum connectivity between neighboring nodes.","PeriodicalId":18720,"journal":{"name":"MILCOM 2012 - 2012 IEEE Military Communications Conference","volume":"20 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Fault tolerant bio-inspired topology control mechanism for autonomous mobile node distribution in MANETs\",\"authors\":\"S. Gundry, Jianmin Zou, Janusz Kusyk, M. U. Uyar, C. Sahin\",\"doi\":\"10.1109/MILCOM.2012.6415743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a fault tolerant bio-inspired topolog-ical control mechanism (TCM-Y) for the evolutionary decision making process of autonomous mobile nodes that adaptively adjust their spatial configuration in MANETs. TCM-Y is based on differential evolution and maintains a user-defined minimum connectivity for each node with its near neighbors. TCM-Y, therefore, provides a topology control mechanism which is fault tolerant with regards to network connectivity that each mobile node is required to maintain. In its fitness calculations, TCM-Y uses the Yao graph structure to enforce a user-defined minimum number of neighbors while obtaining uniform network topology. The effectiveness of TCM-Y is evaluated by comparing it with our differential evolution based topology mechanism (TCM-DE) that uses virtual forces from neighbors in its fitness function. Experimental results obtained from simulation software show that TCM-Y performs well with respect to normalized area coverage, the average connectivity, and the minimum connectivity achieved by mobile nodes. Simulation experiments demonstrate that TCM-Y generates encouraging results for uniform distribution of mobile nodes over unknown terrains while maintaining a user-defined minimum connectivity between neighboring nodes.\",\"PeriodicalId\":18720,\"journal\":{\"name\":\"MILCOM 2012 - 2012 IEEE Military Communications Conference\",\"volume\":\"20 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MILCOM 2012 - 2012 IEEE Military Communications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MILCOM.2012.6415743\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MILCOM 2012 - 2012 IEEE Military Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MILCOM.2012.6415743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fault tolerant bio-inspired topology control mechanism for autonomous mobile node distribution in MANETs
We introduce a fault tolerant bio-inspired topolog-ical control mechanism (TCM-Y) for the evolutionary decision making process of autonomous mobile nodes that adaptively adjust their spatial configuration in MANETs. TCM-Y is based on differential evolution and maintains a user-defined minimum connectivity for each node with its near neighbors. TCM-Y, therefore, provides a topology control mechanism which is fault tolerant with regards to network connectivity that each mobile node is required to maintain. In its fitness calculations, TCM-Y uses the Yao graph structure to enforce a user-defined minimum number of neighbors while obtaining uniform network topology. The effectiveness of TCM-Y is evaluated by comparing it with our differential evolution based topology mechanism (TCM-DE) that uses virtual forces from neighbors in its fitness function. Experimental results obtained from simulation software show that TCM-Y performs well with respect to normalized area coverage, the average connectivity, and the minimum connectivity achieved by mobile nodes. Simulation experiments demonstrate that TCM-Y generates encouraging results for uniform distribution of mobile nodes over unknown terrains while maintaining a user-defined minimum connectivity between neighboring nodes.