采用RTS/CTS和帧连接技术提高IEEE 802.15.4的性能

IF 1.5 Q3 TELECOMMUNICATIONS
Norberto Barroca, Fernando J. Velez, Luís M. Borges, Periklis Chatzimisios
{"title":"采用RTS/CTS和帧连接技术提高IEEE 802.15.4的性能","authors":"Norberto Barroca,&nbsp;Fernando J. Velez,&nbsp;Luís M. Borges,&nbsp;Periklis Chatzimisios","doi":"10.1049/iet-wss.2019.0003","DOIUrl":null,"url":null,"abstract":"<div>\n <p>IEEE 802.15.4 has been widely accepted as the de facto standard for wireless sensor networks (WSNs). However, as in their current solutions for medium access control (MAC) sub-layer protocols, channel efficiency has a margin for improvement, in this study, the authors evaluate the IEEE 802.15.4 MAC sub-layer performance by proposing to use the request-/clear-to-send (RTS/CTS) combined with frame concatenation and block acknowledgement (BACK) mechanism to optimise the channel use. The proposed solutions are studied in a distributed scenario with single-destination and single-rate frame aggregation. The throughput and delay performance is mathematically derived under channel environments without/with transmission errors for both the chirp spread spectrum and direct sequence spread spectrum physical layers for the 2.4 GHz Industrial, Scientific and Medical band. Simulation results successfully verify the authors’ proposed analytical model. For more than seven TX (aggregated frames) all the MAC sub-layer protocols employing RTS/CTS with frame concatenation (including sensor BACK MAC) allow for optimising channel use in WSNs, corresponding to 18–74% improvement in the maximum average throughput and minimum average delay, together with 3.3–14.1% decrease in energy consumption.</p>\n </div>","PeriodicalId":51726,"journal":{"name":"IET Wireless Sensor Systems","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/iet-wss.2019.0003","citationCount":"3","resultStr":"{\"title\":\"Performance enhancement of IEEE 802.15.4 by employing RTS/CTS and frame concatenation\",\"authors\":\"Norberto Barroca,&nbsp;Fernando J. Velez,&nbsp;Luís M. Borges,&nbsp;Periklis Chatzimisios\",\"doi\":\"10.1049/iet-wss.2019.0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>IEEE 802.15.4 has been widely accepted as the de facto standard for wireless sensor networks (WSNs). However, as in their current solutions for medium access control (MAC) sub-layer protocols, channel efficiency has a margin for improvement, in this study, the authors evaluate the IEEE 802.15.4 MAC sub-layer performance by proposing to use the request-/clear-to-send (RTS/CTS) combined with frame concatenation and block acknowledgement (BACK) mechanism to optimise the channel use. The proposed solutions are studied in a distributed scenario with single-destination and single-rate frame aggregation. The throughput and delay performance is mathematically derived under channel environments without/with transmission errors for both the chirp spread spectrum and direct sequence spread spectrum physical layers for the 2.4 GHz Industrial, Scientific and Medical band. Simulation results successfully verify the authors’ proposed analytical model. For more than seven TX (aggregated frames) all the MAC sub-layer protocols employing RTS/CTS with frame concatenation (including sensor BACK MAC) allow for optimising channel use in WSNs, corresponding to 18–74% improvement in the maximum average throughput and minimum average delay, together with 3.3–14.1% decrease in energy consumption.</p>\\n </div>\",\"PeriodicalId\":51726,\"journal\":{\"name\":\"IET Wireless Sensor Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2020-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/iet-wss.2019.0003\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Wireless Sensor Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/iet-wss.2019.0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Wireless Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/iet-wss.2019.0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 3

摘要

IEEE 802.15.4已被广泛接受为无线传感器网络(wsn)的事实上的标准。然而,正如他们目前针对介质访问控制(MAC)子层协议的解决方案一样,信道效率还有改进的空间,在本研究中,作者通过建议使用请求/清除发送(RTS/CTS)结合帧连接和块确认(BACK)机制来评估IEEE 802.15.4 MAC子层性能,以优化信道使用。在单目标单速率帧聚合的分布式场景下,对所提出的解决方案进行了研究。对2.4 GHz工业、科学和医疗频段的啁啾扩频和直接序列扩频物理层在无/有传输误差的信道环境下的吞吐量和延迟性能进行了数学推导。仿真结果成功地验证了作者提出的分析模型。对于超过7个TX(聚合帧)的所有MAC子层协议,采用RTS/CTS与帧连接(包括传感器回MAC)允许优化wsn中的通道使用,对应于最大平均吞吐量和最小平均延迟的18-74%的改进,以及3.3-14.1%的能耗降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Performance enhancement of IEEE 802.15.4 by employing RTS/CTS and frame concatenation

Performance enhancement of IEEE 802.15.4 by employing RTS/CTS and frame concatenation

IEEE 802.15.4 has been widely accepted as the de facto standard for wireless sensor networks (WSNs). However, as in their current solutions for medium access control (MAC) sub-layer protocols, channel efficiency has a margin for improvement, in this study, the authors evaluate the IEEE 802.15.4 MAC sub-layer performance by proposing to use the request-/clear-to-send (RTS/CTS) combined with frame concatenation and block acknowledgement (BACK) mechanism to optimise the channel use. The proposed solutions are studied in a distributed scenario with single-destination and single-rate frame aggregation. The throughput and delay performance is mathematically derived under channel environments without/with transmission errors for both the chirp spread spectrum and direct sequence spread spectrum physical layers for the 2.4 GHz Industrial, Scientific and Medical band. Simulation results successfully verify the authors’ proposed analytical model. For more than seven TX (aggregated frames) all the MAC sub-layer protocols employing RTS/CTS with frame concatenation (including sensor BACK MAC) allow for optimising channel use in WSNs, corresponding to 18–74% improvement in the maximum average throughput and minimum average delay, together with 3.3–14.1% decrease in energy consumption.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Wireless Sensor Systems
IET Wireless Sensor Systems TELECOMMUNICATIONS-
CiteScore
4.90
自引率
5.30%
发文量
13
审稿时长
33 weeks
期刊介绍: IET Wireless Sensor Systems is aimed at the growing field of wireless sensor networks and distributed systems, which has been expanding rapidly in recent years and is evolving into a multi-billion dollar industry. The Journal has been launched to give a platform to researchers and academics in the field and is intended to cover the research, engineering, technological developments, innovative deployment of distributed sensor and actuator systems. Topics covered include, but are not limited to theoretical developments of: Innovative Architectures for Smart Sensors;Nano Sensors and Actuators Unstructured Networking; Cooperative and Clustering Distributed Sensors; Data Fusion for Distributed Sensors; Distributed Intelligence in Distributed Sensors; Energy Harvesting for and Lifetime of Smart Sensors and Actuators; Cross-Layer Design and Layer Optimisation in Distributed Sensors; Security, Trust and Dependability of Distributed Sensors. The Journal also covers; Innovative Services and Applications for: Monitoring: Health, Traffic, Weather and Toxins; Surveillance: Target Tracking and Localization; Observation: Global Resources and Geological Activities (Earth, Forest, Mines, Underwater); Industrial Applications of Distributed Sensors in Green and Agile Manufacturing; Sensor and RFID Applications of the Internet-of-Things ("IoT"); Smart Metering; Machine-to-Machine Communications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信