{"title":"基于优化驱动核和深度卷积神经网络的多视图人脸视频超分辨率研究","authors":"A. Deshmukh, N. U. Rani","doi":"10.4018/ijdcf.2020070106","DOIUrl":null,"url":null,"abstract":"One of the major challenges faced by video surveillance is recognition from low-resolution videos or person identification. Image enhancement methods play a significant role in enhancing the resolution of the video. This article introduces a technique for face super resolution based on a deep convolutional neural network (Deep CNN). At first, the video frames are extracted from the input video and the face detection is performed using the Viola-Jones algorithm. The detected face image and the scaling factors are fed into the Fractional-Grey Wolf Optimizer (FGWO)-based kernel weighted regression model and the proposed Deep CNN separately. Finally, the results obtained from both the techniques are integrated using a fuzzy logic system, offering a face image with enhanced resolution. Experimentation is carried out using the UCSD face video dataset, and the effectiveness of the proposed Deep CNN is checked depending on the block size and the upscaling factor values and is evaluated to be the best when compared to other existing techniques with an improved SDME value of 80.888.","PeriodicalId":44650,"journal":{"name":"International Journal of Digital Crime and Forensics","volume":"15 1","pages":"77-95"},"PeriodicalIF":0.6000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimization-Driven Kernel and Deep Convolutional Neural Network for Multi-View Face Video Super Resolution\",\"authors\":\"A. Deshmukh, N. U. Rani\",\"doi\":\"10.4018/ijdcf.2020070106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the major challenges faced by video surveillance is recognition from low-resolution videos or person identification. Image enhancement methods play a significant role in enhancing the resolution of the video. This article introduces a technique for face super resolution based on a deep convolutional neural network (Deep CNN). At first, the video frames are extracted from the input video and the face detection is performed using the Viola-Jones algorithm. The detected face image and the scaling factors are fed into the Fractional-Grey Wolf Optimizer (FGWO)-based kernel weighted regression model and the proposed Deep CNN separately. Finally, the results obtained from both the techniques are integrated using a fuzzy logic system, offering a face image with enhanced resolution. Experimentation is carried out using the UCSD face video dataset, and the effectiveness of the proposed Deep CNN is checked depending on the block size and the upscaling factor values and is evaluated to be the best when compared to other existing techniques with an improved SDME value of 80.888.\",\"PeriodicalId\":44650,\"journal\":{\"name\":\"International Journal of Digital Crime and Forensics\",\"volume\":\"15 1\",\"pages\":\"77-95\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Digital Crime and Forensics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijdcf.2020070106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Digital Crime and Forensics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijdcf.2020070106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Optimization-Driven Kernel and Deep Convolutional Neural Network for Multi-View Face Video Super Resolution
One of the major challenges faced by video surveillance is recognition from low-resolution videos or person identification. Image enhancement methods play a significant role in enhancing the resolution of the video. This article introduces a technique for face super resolution based on a deep convolutional neural network (Deep CNN). At first, the video frames are extracted from the input video and the face detection is performed using the Viola-Jones algorithm. The detected face image and the scaling factors are fed into the Fractional-Grey Wolf Optimizer (FGWO)-based kernel weighted regression model and the proposed Deep CNN separately. Finally, the results obtained from both the techniques are integrated using a fuzzy logic system, offering a face image with enhanced resolution. Experimentation is carried out using the UCSD face video dataset, and the effectiveness of the proposed Deep CNN is checked depending on the block size and the upscaling factor values and is evaluated to be the best when compared to other existing techniques with an improved SDME value of 80.888.