基于区域感知处理的神经形态图像传感器设计

Md Jubaer Hossain Pantho, Pankaj Bhowmik, C. Bobda
{"title":"基于区域感知处理的神经形态图像传感器设计","authors":"Md Jubaer Hossain Pantho, Pankaj Bhowmik, C. Bobda","doi":"10.1109/ISVLSI.2019.00089","DOIUrl":null,"url":null,"abstract":"This paper presents a pixel parallel architecture of a neuromorphic image sensor, designed as a 3D bottom-up architecture composing of several computational planes where each plane performs different image processing algorithms. The model emulates the hierarchical process in biological vision by providing feedforward and feedback information flow between different planes. The on-chip attention module dynamically detects regions with relevant information and produces a feedback path to sample those regions with a higher clock frequency, whereas regions with low spatial and temporal information receive less attention. The results suggest that by sampling non-relevant regions with a lower frequency, the sensor can reduce redundancy and enable high-performance computing at low power. Furthermore, by deploying high-level reasoning only on the selected regions instead of the entire image the model can decrease computational expenses.","PeriodicalId":6703,"journal":{"name":"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","volume":"17 1","pages":"459-464"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Neuromorphic Image Sensor Design with Region-Aware Processing\",\"authors\":\"Md Jubaer Hossain Pantho, Pankaj Bhowmik, C. Bobda\",\"doi\":\"10.1109/ISVLSI.2019.00089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a pixel parallel architecture of a neuromorphic image sensor, designed as a 3D bottom-up architecture composing of several computational planes where each plane performs different image processing algorithms. The model emulates the hierarchical process in biological vision by providing feedforward and feedback information flow between different planes. The on-chip attention module dynamically detects regions with relevant information and produces a feedback path to sample those regions with a higher clock frequency, whereas regions with low spatial and temporal information receive less attention. The results suggest that by sampling non-relevant regions with a lower frequency, the sensor can reduce redundancy and enable high-performance computing at low power. Furthermore, by deploying high-level reasoning only on the selected regions instead of the entire image the model can decrease computational expenses.\",\"PeriodicalId\":6703,\"journal\":{\"name\":\"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)\",\"volume\":\"17 1\",\"pages\":\"459-464\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISVLSI.2019.00089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2019.00089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种神经形态图像传感器的像素并行架构,该架构由多个计算平面组成,每个计算平面执行不同的图像处理算法。该模型通过提供不同平面之间的前馈和反馈信息流,模拟了生物视觉中的分层过程。片上注意力模块动态检测具有相关信息的区域,并产生反馈路径对时钟频率较高的区域进行采样,而时空信息较低的区域受到的关注较少。结果表明,通过以较低的频率采样非相关区域,传感器可以减少冗余并实现低功耗下的高性能计算。此外,通过仅在选定区域而不是整个图像上部署高级推理,该模型可以减少计算开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neuromorphic Image Sensor Design with Region-Aware Processing
This paper presents a pixel parallel architecture of a neuromorphic image sensor, designed as a 3D bottom-up architecture composing of several computational planes where each plane performs different image processing algorithms. The model emulates the hierarchical process in biological vision by providing feedforward and feedback information flow between different planes. The on-chip attention module dynamically detects regions with relevant information and produces a feedback path to sample those regions with a higher clock frequency, whereas regions with low spatial and temporal information receive less attention. The results suggest that by sampling non-relevant regions with a lower frequency, the sensor can reduce redundancy and enable high-performance computing at low power. Furthermore, by deploying high-level reasoning only on the selected regions instead of the entire image the model can decrease computational expenses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信