基于深度学习的遥感卫星图像船舶区域检测

Chukka Anusha, Chandra R. Rupa, G. Samhitha
{"title":"基于深度学习的遥感卫星图像船舶区域检测","authors":"Chukka Anusha, Chandra R. Rupa, G. Samhitha","doi":"10.1109/iciptm54933.2022.9754168","DOIUrl":null,"url":null,"abstract":"Ship detection in satellite imagery is an important application in marine time security. This can also be majorly used in sea pollution control, oil leakage detection and other illegal fisheries. A deep learning approach can be used to detect the ships from satellite imagery. For this, pre-processing using image segmentation is done followed by the bounding box detection from YOLOv3. This is done on a Kaggle ship dataset with 231722 images. After passing the training set to the model, the model can detect the region of ship followed by count of ships in the given image. This can be tested with other deep learning approaches to increase the detection accuracy. Furthermore, the detection region and the count of ships can be passed to a hash function which in turn increases the security of the model.","PeriodicalId":6810,"journal":{"name":"2022 2nd International Conference on Innovative Practices in Technology and Management (ICIPTM)","volume":"20 1","pages":"118-122"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Region based Detection of Ships from Remote Sensing Satellite Imagery using Deep Learning\",\"authors\":\"Chukka Anusha, Chandra R. Rupa, G. Samhitha\",\"doi\":\"10.1109/iciptm54933.2022.9754168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ship detection in satellite imagery is an important application in marine time security. This can also be majorly used in sea pollution control, oil leakage detection and other illegal fisheries. A deep learning approach can be used to detect the ships from satellite imagery. For this, pre-processing using image segmentation is done followed by the bounding box detection from YOLOv3. This is done on a Kaggle ship dataset with 231722 images. After passing the training set to the model, the model can detect the region of ship followed by count of ships in the given image. This can be tested with other deep learning approaches to increase the detection accuracy. Furthermore, the detection region and the count of ships can be passed to a hash function which in turn increases the security of the model.\",\"PeriodicalId\":6810,\"journal\":{\"name\":\"2022 2nd International Conference on Innovative Practices in Technology and Management (ICIPTM)\",\"volume\":\"20 1\",\"pages\":\"118-122\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 2nd International Conference on Innovative Practices in Technology and Management (ICIPTM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iciptm54933.2022.9754168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Innovative Practices in Technology and Management (ICIPTM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iciptm54933.2022.9754168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

卫星图像中的船舶检测是海上时间安全的重要应用。这也可以主要用于海洋污染控制,石油泄漏检测和其他非法渔业。可以使用深度学习方法从卫星图像中检测船只。为此,使用图像分割进行预处理,然后从YOLOv3进行边界框检测。这是在一个有231722张图像的Kaggle船数据集上完成的。将训练集传递给模型后,模型在给定图像中先检测船舶区域,再检测船舶数量。这可以用其他深度学习方法进行测试,以提高检测精度。此外,检测区域和船舶数量可以传递给哈希函数,从而提高了模型的安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Region based Detection of Ships from Remote Sensing Satellite Imagery using Deep Learning
Ship detection in satellite imagery is an important application in marine time security. This can also be majorly used in sea pollution control, oil leakage detection and other illegal fisheries. A deep learning approach can be used to detect the ships from satellite imagery. For this, pre-processing using image segmentation is done followed by the bounding box detection from YOLOv3. This is done on a Kaggle ship dataset with 231722 images. After passing the training set to the model, the model can detect the region of ship followed by count of ships in the given image. This can be tested with other deep learning approaches to increase the detection accuracy. Furthermore, the detection region and the count of ships can be passed to a hash function which in turn increases the security of the model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信