基于可观测逆映射多项式逼近的离散时间观测器

A. Germani, C. Manes
{"title":"基于可观测逆映射多项式逼近的离散时间观测器","authors":"A. Germani, C. Manes","doi":"10.3166/ejc.15.143156","DOIUrl":null,"url":null,"abstract":"This paper investigates the problem of asymptotic state observation for analytic nonlinear discrete-time systems. A new technique for the observer construction, based on the Taylor polynomial approximation of the inverse of the observability map, is presented and discussed. The degree chosen for the approximation is the most important design parameter of the observer, in that it can be chosen such to ensure the convergence of the observation error at any desired exponential rate, in any prescribed convergence region (semiglobal exponential convergence).","PeriodicalId":11813,"journal":{"name":"Eur. J. Control","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A Discrete-time Observer Based on the Polynomial Approximation of the Inverse Observability Map\",\"authors\":\"A. Germani, C. Manes\",\"doi\":\"10.3166/ejc.15.143156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the problem of asymptotic state observation for analytic nonlinear discrete-time systems. A new technique for the observer construction, based on the Taylor polynomial approximation of the inverse of the observability map, is presented and discussed. The degree chosen for the approximation is the most important design parameter of the observer, in that it can be chosen such to ensure the convergence of the observation error at any desired exponential rate, in any prescribed convergence region (semiglobal exponential convergence).\",\"PeriodicalId\":11813,\"journal\":{\"name\":\"Eur. J. Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eur. J. Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3166/ejc.15.143156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eur. J. Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3166/ejc.15.143156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

研究了解析型非线性离散系统的渐近状态观测问题。提出并讨论了一种基于可观测映射逆的泰勒多项式近似的观测器构造新技术。为逼近所选择的程度是观测器最重要的设计参数,因为它的选择可以保证观测误差在任何期望的指数速率下,在任何规定的收敛区域(半全局指数收敛)收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Discrete-time Observer Based on the Polynomial Approximation of the Inverse Observability Map
This paper investigates the problem of asymptotic state observation for analytic nonlinear discrete-time systems. A new technique for the observer construction, based on the Taylor polynomial approximation of the inverse of the observability map, is presented and discussed. The degree chosen for the approximation is the most important design parameter of the observer, in that it can be chosen such to ensure the convergence of the observation error at any desired exponential rate, in any prescribed convergence region (semiglobal exponential convergence).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信