Nour Alsawaftah, Vinod Paul, Doua Kosaji, Leen Khabbaz, Nahid S Awad, G. Husseini
{"title":"超声敏感的crgd修饰脂质体作为一种新型给药系统","authors":"Nour Alsawaftah, Vinod Paul, Doua Kosaji, Leen Khabbaz, Nahid S Awad, G. Husseini","doi":"10.1080/21691401.2022.2074439","DOIUrl":null,"url":null,"abstract":"Abstract Targeted liposomes enable the delivery of encapsulated chemotherapeutics to tumours by targeting specific receptors overexpressed on the surfaces of cancer cells; this helps in reducing the systemic side effects associated with the cytotoxic agents. Upon reaching the targeted site, these liposomes can be triggered to release their payloads using internal or external triggers. In this study, we investigate the use of low-frequency ultrasound as an external modality to trigger the release of a model drug (calcein) from non-targeted and targeted pegylated liposomes modified with cyclic arginine–glycine–aspartate (cRGD). Liposomes were exposed to sonication at 20-kHz using three different power densities (6.2, 9, and 10 mW/cm2). Our results showed that increasing the power density increased calcein release from the sonicated liposomes. Moreover, cRGD conjugation to the surface of the liposomes rendered cRGD-liposomes more susceptible to ultrasound compared to the non-targeted liposomes. cRGD conjugation was also found to increase cellular uptake of calcein by human colorectal carcinoma (HCT116) cells which were further enhanced following sonicating the cells with low-frequency ultrasound (LFUS).","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"22 1","pages":"111 - 120"},"PeriodicalIF":4.5000,"publicationDate":"2022-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Ultrasound-sensitive cRGD-modified liposomes as a novel drug delivery system\",\"authors\":\"Nour Alsawaftah, Vinod Paul, Doua Kosaji, Leen Khabbaz, Nahid S Awad, G. Husseini\",\"doi\":\"10.1080/21691401.2022.2074439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Targeted liposomes enable the delivery of encapsulated chemotherapeutics to tumours by targeting specific receptors overexpressed on the surfaces of cancer cells; this helps in reducing the systemic side effects associated with the cytotoxic agents. Upon reaching the targeted site, these liposomes can be triggered to release their payloads using internal or external triggers. In this study, we investigate the use of low-frequency ultrasound as an external modality to trigger the release of a model drug (calcein) from non-targeted and targeted pegylated liposomes modified with cyclic arginine–glycine–aspartate (cRGD). Liposomes were exposed to sonication at 20-kHz using three different power densities (6.2, 9, and 10 mW/cm2). Our results showed that increasing the power density increased calcein release from the sonicated liposomes. Moreover, cRGD conjugation to the surface of the liposomes rendered cRGD-liposomes more susceptible to ultrasound compared to the non-targeted liposomes. cRGD conjugation was also found to increase cellular uptake of calcein by human colorectal carcinoma (HCT116) cells which were further enhanced following sonicating the cells with low-frequency ultrasound (LFUS).\",\"PeriodicalId\":8736,\"journal\":{\"name\":\"Artificial Cells, Nanomedicine, and Biotechnology\",\"volume\":\"22 1\",\"pages\":\"111 - 120\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2022-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Cells, Nanomedicine, and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/21691401.2022.2074439\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Cells, Nanomedicine, and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21691401.2022.2074439","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Ultrasound-sensitive cRGD-modified liposomes as a novel drug delivery system
Abstract Targeted liposomes enable the delivery of encapsulated chemotherapeutics to tumours by targeting specific receptors overexpressed on the surfaces of cancer cells; this helps in reducing the systemic side effects associated with the cytotoxic agents. Upon reaching the targeted site, these liposomes can be triggered to release their payloads using internal or external triggers. In this study, we investigate the use of low-frequency ultrasound as an external modality to trigger the release of a model drug (calcein) from non-targeted and targeted pegylated liposomes modified with cyclic arginine–glycine–aspartate (cRGD). Liposomes were exposed to sonication at 20-kHz using three different power densities (6.2, 9, and 10 mW/cm2). Our results showed that increasing the power density increased calcein release from the sonicated liposomes. Moreover, cRGD conjugation to the surface of the liposomes rendered cRGD-liposomes more susceptible to ultrasound compared to the non-targeted liposomes. cRGD conjugation was also found to increase cellular uptake of calcein by human colorectal carcinoma (HCT116) cells which were further enhanced following sonicating the cells with low-frequency ultrasound (LFUS).
期刊介绍:
Artificial Cells, Nanomedicine and Biotechnology covers the frontiers of interdisciplinary research and application, combining artificial cells, nanotechnology, nanobiotechnology, biotechnology, molecular biology, bioencapsulation, novel carriers, stem cells and tissue engineering. Emphasis is on basic research, applied research, and clinical and industrial applications of the following topics:artificial cellsblood substitutes and oxygen therapeuticsnanotechnology, nanobiotecnology, nanomedicinetissue engineeringstem cellsbioencapsulationmicroencapsulation and nanoencapsulationmicroparticles and nanoparticlesliposomescell therapy and gene therapyenzyme therapydrug delivery systemsbiodegradable and biocompatible polymers for scaffolds and carriersbiosensorsimmobilized enzymes and their usesother biotechnological and nanobiotechnological approachesRapid progress in modern research cannot be carried out in isolation and is based on the combined use of the different novel approaches. The interdisciplinary research involving novel approaches, as discussed above, has revolutionized this field resulting in rapid developments. This journal serves to bring these different, modern and futuristic approaches together for the academic, clinical and industrial communities to allow for even greater developments of this highly interdisciplinary area.