{"title":"基于I/O分析和优化的可扩展深度学习","authors":"S. Pumma, Min Si, W. Feng, P. Balaji","doi":"10.1145/3331526","DOIUrl":null,"url":null,"abstract":"Scalable deep neural network training has been gaining prominence because of the increasing importance of deep learning in a multitude of scientific and commercial domains. Consequently, a number of researchers have investigated techniques to optimize deep learning systems. Much of the prior work has focused on runtime and algorithmic enhancements to optimize the computation and communication. Despite these enhancements, however, deep learning systems still suffer from scalability limitations, particularly with respect to data I/O. This situation is especially true for training models where the computation can be effectively parallelized, leaving I/O as the major bottleneck. In fact, our analysis shows that I/O can take up to 90% of the total training time. Thus, in this article, we first analyze LMDB, the most widely used I/O subsystem of deep learning frameworks, to understand the causes of this I/O inefficiency. Based on our analysis, we propose LMDBIO—an optimized I/O plugin for scalable deep learning. LMDBIO includes six novel optimizations that together address the various shortcomings in existing I/O for deep learning. Our experimental results show that LMDBIO significantly outperforms LMDB in all cases and improves overall application performance by up to 65-fold on a 9,216-core system.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Scalable Deep Learning via I/O Analysis and Optimization\",\"authors\":\"S. Pumma, Min Si, W. Feng, P. Balaji\",\"doi\":\"10.1145/3331526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scalable deep neural network training has been gaining prominence because of the increasing importance of deep learning in a multitude of scientific and commercial domains. Consequently, a number of researchers have investigated techniques to optimize deep learning systems. Much of the prior work has focused on runtime and algorithmic enhancements to optimize the computation and communication. Despite these enhancements, however, deep learning systems still suffer from scalability limitations, particularly with respect to data I/O. This situation is especially true for training models where the computation can be effectively parallelized, leaving I/O as the major bottleneck. In fact, our analysis shows that I/O can take up to 90% of the total training time. Thus, in this article, we first analyze LMDB, the most widely used I/O subsystem of deep learning frameworks, to understand the causes of this I/O inefficiency. Based on our analysis, we propose LMDBIO—an optimized I/O plugin for scalable deep learning. LMDBIO includes six novel optimizations that together address the various shortcomings in existing I/O for deep learning. Our experimental results show that LMDBIO significantly outperforms LMDB in all cases and improves overall application performance by up to 65-fold on a 9,216-core system.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3331526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3331526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Scalable Deep Learning via I/O Analysis and Optimization
Scalable deep neural network training has been gaining prominence because of the increasing importance of deep learning in a multitude of scientific and commercial domains. Consequently, a number of researchers have investigated techniques to optimize deep learning systems. Much of the prior work has focused on runtime and algorithmic enhancements to optimize the computation and communication. Despite these enhancements, however, deep learning systems still suffer from scalability limitations, particularly with respect to data I/O. This situation is especially true for training models where the computation can be effectively parallelized, leaving I/O as the major bottleneck. In fact, our analysis shows that I/O can take up to 90% of the total training time. Thus, in this article, we first analyze LMDB, the most widely used I/O subsystem of deep learning frameworks, to understand the causes of this I/O inefficiency. Based on our analysis, we propose LMDBIO—an optimized I/O plugin for scalable deep learning. LMDBIO includes six novel optimizations that together address the various shortcomings in existing I/O for deep learning. Our experimental results show that LMDBIO significantly outperforms LMDB in all cases and improves overall application performance by up to 65-fold on a 9,216-core system.