一个简化的自然梯度学习算法

Michael R. Bastian, J. Gunther, T. Moon
{"title":"一个简化的自然梯度学习算法","authors":"Michael R. Bastian, J. Gunther, T. Moon","doi":"10.1155/2011/407497","DOIUrl":null,"url":null,"abstract":"Adaptive natural gradient learning avoids singularities in the parameter space of multilayer perceptrons. However, it requires a larger number of additional parameters than ordinary backpropagation in the form of the Fisher information matrix. This article describes a new approach to natural gradient learning that uses a smaller Fisher information matrix. It also uses a prior distribution on the neural network parameters and an annealed learning rate. While this new approach is computationally simpler, its performance is comparable to that of Adaptive natural gradient learning.","PeriodicalId":7288,"journal":{"name":"Adv. Artif. Neural Syst.","volume":"44 1","pages":"407497:1-407497:9"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A Simplified Natural Gradient Learning Algorithm\",\"authors\":\"Michael R. Bastian, J. Gunther, T. Moon\",\"doi\":\"10.1155/2011/407497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adaptive natural gradient learning avoids singularities in the parameter space of multilayer perceptrons. However, it requires a larger number of additional parameters than ordinary backpropagation in the form of the Fisher information matrix. This article describes a new approach to natural gradient learning that uses a smaller Fisher information matrix. It also uses a prior distribution on the neural network parameters and an annealed learning rate. While this new approach is computationally simpler, its performance is comparable to that of Adaptive natural gradient learning.\",\"PeriodicalId\":7288,\"journal\":{\"name\":\"Adv. Artif. Neural Syst.\",\"volume\":\"44 1\",\"pages\":\"407497:1-407497:9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adv. Artif. Neural Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2011/407497\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adv. Artif. Neural Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2011/407497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

自适应自然梯度学习避免了多层感知器参数空间的奇异性。然而,它需要比普通反向传播更多的附加参数(以Fisher信息矩阵的形式)。本文描述了一种使用更小的Fisher信息矩阵的自然梯度学习的新方法。它还使用了神经网络参数的先验分布和退火学习率。虽然这种新方法在计算上更简单,但其性能与自适应自然梯度学习相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Simplified Natural Gradient Learning Algorithm
Adaptive natural gradient learning avoids singularities in the parameter space of multilayer perceptrons. However, it requires a larger number of additional parameters than ordinary backpropagation in the form of the Fisher information matrix. This article describes a new approach to natural gradient learning that uses a smaller Fisher information matrix. It also uses a prior distribution on the neural network parameters and an annealed learning rate. While this new approach is computationally simpler, its performance is comparable to that of Adaptive natural gradient learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信