{"title":"基于Jaya算法和双支持向量机的mri脑肿瘤检测与分类","authors":"Dinesh Ghemosu, S. R. Joshi","doi":"10.3126/jsce.v9i9.46299","DOIUrl":null,"url":null,"abstract":"Brain tumor detection and classification is one of the challenging tasks in the medical image application. Early detection of a brain tumor can help diagnosis and treatment of the patients. Magnetic Resonance Imaging (MRI) is widely used for the detection of brain tumor. Manual analysis of brain MRI, and classification of brain tumor is a tedious and time-consuming job. This paper introduces a novel approach to brain tumor segmentation and classification using BRATS 2015 datasets. Our system exploits the benefits of Jaya Algorithm (JA) as an optimization technique for finding multi-level thresholds to segment the tumor part from the MRI. Feature extraction is implemented by Gray Level Co-occurrence Matrix (GLCM), followed by Principal Component Analysis (PCA) for feature reduction. Due to its inherent distinct features and advantages, a machine-learning approach, Twin Support Vector Machine (TSVM) is used as a classifier. The prediction accuracy of the proposed system yielded up to 97.89 % with sensitivity 96.48%, 98.97 precision, 97.91% F1 Score, and 0.0798 MSE. The accuracy, sensitivity, F1 Score, and MSE are found comparable to the other state-of-arts machine learning methods.","PeriodicalId":36368,"journal":{"name":"AIUB Journal of Science and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection and Classification of MRI-Based Brain Tumor via Jaya Algorithm and Twin Support Vector Machine\",\"authors\":\"Dinesh Ghemosu, S. R. Joshi\",\"doi\":\"10.3126/jsce.v9i9.46299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brain tumor detection and classification is one of the challenging tasks in the medical image application. Early detection of a brain tumor can help diagnosis and treatment of the patients. Magnetic Resonance Imaging (MRI) is widely used for the detection of brain tumor. Manual analysis of brain MRI, and classification of brain tumor is a tedious and time-consuming job. This paper introduces a novel approach to brain tumor segmentation and classification using BRATS 2015 datasets. Our system exploits the benefits of Jaya Algorithm (JA) as an optimization technique for finding multi-level thresholds to segment the tumor part from the MRI. Feature extraction is implemented by Gray Level Co-occurrence Matrix (GLCM), followed by Principal Component Analysis (PCA) for feature reduction. Due to its inherent distinct features and advantages, a machine-learning approach, Twin Support Vector Machine (TSVM) is used as a classifier. The prediction accuracy of the proposed system yielded up to 97.89 % with sensitivity 96.48%, 98.97 precision, 97.91% F1 Score, and 0.0798 MSE. The accuracy, sensitivity, F1 Score, and MSE are found comparable to the other state-of-arts machine learning methods.\",\"PeriodicalId\":36368,\"journal\":{\"name\":\"AIUB Journal of Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIUB Journal of Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3126/jsce.v9i9.46299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIUB Journal of Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3126/jsce.v9i9.46299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
摘要
脑肿瘤的检测与分类是医学图像应用中的难点之一。脑肿瘤的早期发现有助于患者的诊断和治疗。磁共振成像(MRI)被广泛用于脑肿瘤的检测。人工对脑MRI进行分析,对脑肿瘤进行分类是一项繁琐而耗时的工作。本文介绍了一种基于BRATS 2015数据集的脑肿瘤分割分类新方法。我们的系统利用了Jaya算法(JA)作为一种优化技术的优势,用于从MRI中寻找多级阈值来分割肿瘤部分。通过灰度共生矩阵(GLCM)实现特征提取,然后通过主成分分析(PCA)进行特征约简。由于其固有的独特特点和优势,采用机器学习方法Twin Support Vector Machine (TSVM)作为分类器。该系统的预测准确度为97.89%,灵敏度为96.48%,精密度为98.97,F1 Score为97.91%,MSE为0.0798。准确性、灵敏度、F1分数和MSE与其他最先进的机器学习方法相当。
Detection and Classification of MRI-Based Brain Tumor via Jaya Algorithm and Twin Support Vector Machine
Brain tumor detection and classification is one of the challenging tasks in the medical image application. Early detection of a brain tumor can help diagnosis and treatment of the patients. Magnetic Resonance Imaging (MRI) is widely used for the detection of brain tumor. Manual analysis of brain MRI, and classification of brain tumor is a tedious and time-consuming job. This paper introduces a novel approach to brain tumor segmentation and classification using BRATS 2015 datasets. Our system exploits the benefits of Jaya Algorithm (JA) as an optimization technique for finding multi-level thresholds to segment the tumor part from the MRI. Feature extraction is implemented by Gray Level Co-occurrence Matrix (GLCM), followed by Principal Component Analysis (PCA) for feature reduction. Due to its inherent distinct features and advantages, a machine-learning approach, Twin Support Vector Machine (TSVM) is used as a classifier. The prediction accuracy of the proposed system yielded up to 97.89 % with sensitivity 96.48%, 98.97 precision, 97.91% F1 Score, and 0.0798 MSE. The accuracy, sensitivity, F1 Score, and MSE are found comparable to the other state-of-arts machine learning methods.