可解释的神经网络模拟和减少FinFET电路的自热

Chia-Che Chung, Hsin-Cheng Lin, H. H. Lin, W. K. Wan, M. Yang, C. Liu
{"title":"可解释的神经网络模拟和减少FinFET电路的自热","authors":"Chia-Che Chung, Hsin-Cheng Lin, H. H. Lin, W. K. Wan, M. Yang, C. Liu","doi":"10.1109/VLSITechnology18217.2020.9265107","DOIUrl":null,"url":null,"abstract":"An interpretable neural network (NN) is used to model the self-heating (SH) in complex FinFET circuits. The NN training/testing datasets from 3 -stage to 37 -stage chain circuits in folded layout composed of inverter (INV)/NAND/NOR are simulated by our distributed $\\mathrm{R}_{\\mathrm{th}}-\\mathrm{C}_{\\mathrm{th}}$ SPICE model [1], [2]. The interfacial thermal resistance [3], boundary scattering [4], alloy scattering [5], and layout dependence are considered. The NN interpretation by feature importance analysis is consistent with the thermal physics. Stage# is the most important feature of the NN prediction. Both via2 bundle positions and via2 numbers (via2#) are effective to reduce SH. As compared to SPICE, NN prediction in 37 -stage INV chain computes $3\\mathrm{x}10^{6}\\mathrm{X}$ faster with accuracy loss $< 1^{\\circ}\\mathrm{C}$. The high computation efficiency and high precision make NN feasible to predict chain circuits up to 40 stages, which cannot be simulated by SPICE due to long computation time.","PeriodicalId":6850,"journal":{"name":"2020 IEEE Symposium on VLSI Technology","volume":"35 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Interpretable Neural Network to Model and to Reduce Self-Heating of FinFET Circuitry\",\"authors\":\"Chia-Che Chung, Hsin-Cheng Lin, H. H. Lin, W. K. Wan, M. Yang, C. Liu\",\"doi\":\"10.1109/VLSITechnology18217.2020.9265107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An interpretable neural network (NN) is used to model the self-heating (SH) in complex FinFET circuits. The NN training/testing datasets from 3 -stage to 37 -stage chain circuits in folded layout composed of inverter (INV)/NAND/NOR are simulated by our distributed $\\\\mathrm{R}_{\\\\mathrm{th}}-\\\\mathrm{C}_{\\\\mathrm{th}}$ SPICE model [1], [2]. The interfacial thermal resistance [3], boundary scattering [4], alloy scattering [5], and layout dependence are considered. The NN interpretation by feature importance analysis is consistent with the thermal physics. Stage# is the most important feature of the NN prediction. Both via2 bundle positions and via2 numbers (via2#) are effective to reduce SH. As compared to SPICE, NN prediction in 37 -stage INV chain computes $3\\\\mathrm{x}10^{6}\\\\mathrm{X}$ faster with accuracy loss $< 1^{\\\\circ}\\\\mathrm{C}$. The high computation efficiency and high precision make NN feasible to predict chain circuits up to 40 stages, which cannot be simulated by SPICE due to long computation time.\",\"PeriodicalId\":6850,\"journal\":{\"name\":\"2020 IEEE Symposium on VLSI Technology\",\"volume\":\"35 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Symposium on VLSI Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSITechnology18217.2020.9265107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSITechnology18217.2020.9265107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

采用可解释神经网络(NN)对复杂FinFET电路中的自热进行建模。采用我们的分布式$\ mathm {R}_{\ mathm {th}}- $ mathm {C}_{\ mathm {th}}$ SPICE模型[1],[2]对由逆变器(INV)/NAND/NOR组成的折叠布局中3级到37级链电路的神经网络训练/测试数据集进行了仿真。考虑了界面热阻[3]、边界散射[4]、合金散射[5]和布局依赖性。特征重要度分析的神经网络解释与热物理一致。阶段#是神经网络预测最重要的特征。via2束位置和via2数(via2#)都能有效降低SH。与SPICE相比,37级INV链中的NN预测计算$3\ mathm {x}10^{6}\ mathm {x} $的速度更快,精度损失$< 1^{\circ}\ mathm {C}$。高计算效率和高精度使得神经网络可以预测40级以上的链式电路,而SPICE由于计算时间长而无法模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interpretable Neural Network to Model and to Reduce Self-Heating of FinFET Circuitry
An interpretable neural network (NN) is used to model the self-heating (SH) in complex FinFET circuits. The NN training/testing datasets from 3 -stage to 37 -stage chain circuits in folded layout composed of inverter (INV)/NAND/NOR are simulated by our distributed $\mathrm{R}_{\mathrm{th}}-\mathrm{C}_{\mathrm{th}}$ SPICE model [1], [2]. The interfacial thermal resistance [3], boundary scattering [4], alloy scattering [5], and layout dependence are considered. The NN interpretation by feature importance analysis is consistent with the thermal physics. Stage# is the most important feature of the NN prediction. Both via2 bundle positions and via2 numbers (via2#) are effective to reduce SH. As compared to SPICE, NN prediction in 37 -stage INV chain computes $3\mathrm{x}10^{6}\mathrm{X}$ faster with accuracy loss $< 1^{\circ}\mathrm{C}$. The high computation efficiency and high precision make NN feasible to predict chain circuits up to 40 stages, which cannot be simulated by SPICE due to long computation time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信