{"title":"基于特征的lsamvy分布拟合优度检验构造方法","authors":"Žikica Lukić, B. Milošević","doi":"10.1080/02331888.2023.2238236","DOIUrl":null,"url":null,"abstract":"The Lévy distribution, alongside the Normal and Cauchy distributions, is one of the only three stable distributions whose density can be obtained in a closed form. However, there are only a few specific goodness-of-fit tests for the Lévy distribution. In this paper, two novel classes of goodness-of-fit tests for the Lévy distribution are proposed. Both tests are based on V-empirical Laplace transforms. New tests are scale free under the null hypothesis, which makes them suitable for testing the composite hypothesis. The finite sample and limiting properties of test statistics are obtained. In addition, a generalization of the recent Bhati–Kattumannil goodness-of-fit test to the Lévy distribution is considered. For assessing the quality of novel and competitor tests, the local Bahadur efficiencies are computed, and a wide power study is conducted. Both criteria clearly demonstrate the quality of the new tests. The applicability of the novel tests is demonstrated with two real-data examples.","PeriodicalId":54358,"journal":{"name":"Statistics","volume":"13 1","pages":"1087 - 1116"},"PeriodicalIF":1.2000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization-based approach for construction of goodness-of-fit test for Lévy distribution\",\"authors\":\"Žikica Lukić, B. Milošević\",\"doi\":\"10.1080/02331888.2023.2238236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Lévy distribution, alongside the Normal and Cauchy distributions, is one of the only three stable distributions whose density can be obtained in a closed form. However, there are only a few specific goodness-of-fit tests for the Lévy distribution. In this paper, two novel classes of goodness-of-fit tests for the Lévy distribution are proposed. Both tests are based on V-empirical Laplace transforms. New tests are scale free under the null hypothesis, which makes them suitable for testing the composite hypothesis. The finite sample and limiting properties of test statistics are obtained. In addition, a generalization of the recent Bhati–Kattumannil goodness-of-fit test to the Lévy distribution is considered. For assessing the quality of novel and competitor tests, the local Bahadur efficiencies are computed, and a wide power study is conducted. Both criteria clearly demonstrate the quality of the new tests. The applicability of the novel tests is demonstrated with two real-data examples.\",\"PeriodicalId\":54358,\"journal\":{\"name\":\"Statistics\",\"volume\":\"13 1\",\"pages\":\"1087 - 1116\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/02331888.2023.2238236\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/02331888.2023.2238236","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Characterization-based approach for construction of goodness-of-fit test for Lévy distribution
The Lévy distribution, alongside the Normal and Cauchy distributions, is one of the only three stable distributions whose density can be obtained in a closed form. However, there are only a few specific goodness-of-fit tests for the Lévy distribution. In this paper, two novel classes of goodness-of-fit tests for the Lévy distribution are proposed. Both tests are based on V-empirical Laplace transforms. New tests are scale free under the null hypothesis, which makes them suitable for testing the composite hypothesis. The finite sample and limiting properties of test statistics are obtained. In addition, a generalization of the recent Bhati–Kattumannil goodness-of-fit test to the Lévy distribution is considered. For assessing the quality of novel and competitor tests, the local Bahadur efficiencies are computed, and a wide power study is conducted. Both criteria clearly demonstrate the quality of the new tests. The applicability of the novel tests is demonstrated with two real-data examples.
期刊介绍:
Statistics publishes papers developing and analysing new methods for any active field of statistics, motivated by real-life problems. Papers submitted for consideration should provide interesting and novel contributions to statistical theory and its applications with rigorous mathematical results and proofs. Moreover, numerical simulations and application to real data sets can improve the quality of papers, and should be included where appropriate. Statistics does not publish papers which represent mere application of existing procedures to case studies, and papers are required to contain methodological or theoretical innovation. Topics of interest include, for example, nonparametric statistics, time series, analysis of topological or functional data. Furthermore the journal also welcomes submissions in the field of theoretical econometrics and its links to mathematical statistics.