{"title":"《LittleDog》基于特征的地形分类","authors":"Paul Filitchkin, Katie Byl","doi":"10.1109/IROS.2012.6386042","DOIUrl":null,"url":null,"abstract":"Recent work in terrain classification has relied largely on 3D sensing methods and color based classification. We present an approach that works with a single, compact camera and maintains high classification rates that are robust to changes in illumination. Terrain is classified using a bag of visual words (BOVW) created from speeded up robust features (SURF) with a support vector machine (SVM) classifier. We present several novel techniques to augment this approach. A gradient descent inspired algorithm is used to adjust the SURF Hessian threshold to reach a nominal feature density. A sliding window technique is also used to classify mixed terrain images with high resolution. We demonstrate that our approach is suitable for small legged robots by performing real-time terrain classification on LittleDog. The classifier is used to select between predetermined gaits to traverse terrain of varying difficulty. Results indicate that real-time classification in-the-loop is faster than using a single all-terrain gait.","PeriodicalId":6358,"journal":{"name":"2012 IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"24 1","pages":"1387-1392"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"99","resultStr":"{\"title\":\"Feature-based terrain classification for LittleDog\",\"authors\":\"Paul Filitchkin, Katie Byl\",\"doi\":\"10.1109/IROS.2012.6386042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent work in terrain classification has relied largely on 3D sensing methods and color based classification. We present an approach that works with a single, compact camera and maintains high classification rates that are robust to changes in illumination. Terrain is classified using a bag of visual words (BOVW) created from speeded up robust features (SURF) with a support vector machine (SVM) classifier. We present several novel techniques to augment this approach. A gradient descent inspired algorithm is used to adjust the SURF Hessian threshold to reach a nominal feature density. A sliding window technique is also used to classify mixed terrain images with high resolution. We demonstrate that our approach is suitable for small legged robots by performing real-time terrain classification on LittleDog. The classifier is used to select between predetermined gaits to traverse terrain of varying difficulty. Results indicate that real-time classification in-the-loop is faster than using a single all-terrain gait.\",\"PeriodicalId\":6358,\"journal\":{\"name\":\"2012 IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"volume\":\"24 1\",\"pages\":\"1387-1392\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"99\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2012.6386042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2012.6386042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Feature-based terrain classification for LittleDog
Recent work in terrain classification has relied largely on 3D sensing methods and color based classification. We present an approach that works with a single, compact camera and maintains high classification rates that are robust to changes in illumination. Terrain is classified using a bag of visual words (BOVW) created from speeded up robust features (SURF) with a support vector machine (SVM) classifier. We present several novel techniques to augment this approach. A gradient descent inspired algorithm is used to adjust the SURF Hessian threshold to reach a nominal feature density. A sliding window technique is also used to classify mixed terrain images with high resolution. We demonstrate that our approach is suitable for small legged robots by performing real-time terrain classification on LittleDog. The classifier is used to select between predetermined gaits to traverse terrain of varying difficulty. Results indicate that real-time classification in-the-loop is faster than using a single all-terrain gait.