液滴直径对激光加工多尺度结构表面莱顿弗罗斯特温度的影响

Anton Hassebrook, C. Kruse, Chris Wilson, T. Anderson, C. Zuhlke, D. Alexander, G. Gogos, S. Ndao
{"title":"液滴直径对激光加工多尺度结构表面莱顿弗罗斯特温度的影响","authors":"Anton Hassebrook, C. Kruse, Chris Wilson, T. Anderson, C. Zuhlke, D. Alexander, G. Gogos, S. Ndao","doi":"10.1109/ITHERM.2014.6892316","DOIUrl":null,"url":null,"abstract":"In this paper, an experimental investigation of the effects of droplet diameters on the Leidenfrost temperature and its shifts has been carried out. Tests were conducted on a 304 stainless steel polished surface and a stainless steel surface which was processed by a femtosecond laser to form Above Surface Growth (ASG) nano/microstructures. To determine the Leidenfrost temperatures, the droplet lifetime method was employed for both the polished and processed surfaces. A precision dropper was used to vary the size of droplets from 1.5 to 4 millimeters. The Leidenfrost temperature was shown to display shifts as high as 85 °C on the processed surface over the range of droplet sizes, as opposed to a 45 °C shift on the polished surface. The difference between the shifts was attributed to the nature of the force balance between dynamic pressure of droplets and vapor pressure of the insulating vapor layer.","PeriodicalId":12453,"journal":{"name":"Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","volume":"7 1","pages":"452-457"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Effects of droplet diameter on the Leidenfrost temperature of laser processed multiscale structured surfaces\",\"authors\":\"Anton Hassebrook, C. Kruse, Chris Wilson, T. Anderson, C. Zuhlke, D. Alexander, G. Gogos, S. Ndao\",\"doi\":\"10.1109/ITHERM.2014.6892316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an experimental investigation of the effects of droplet diameters on the Leidenfrost temperature and its shifts has been carried out. Tests were conducted on a 304 stainless steel polished surface and a stainless steel surface which was processed by a femtosecond laser to form Above Surface Growth (ASG) nano/microstructures. To determine the Leidenfrost temperatures, the droplet lifetime method was employed for both the polished and processed surfaces. A precision dropper was used to vary the size of droplets from 1.5 to 4 millimeters. The Leidenfrost temperature was shown to display shifts as high as 85 °C on the processed surface over the range of droplet sizes, as opposed to a 45 °C shift on the polished surface. The difference between the shifts was attributed to the nature of the force balance between dynamic pressure of droplets and vapor pressure of the insulating vapor layer.\",\"PeriodicalId\":12453,\"journal\":{\"name\":\"Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)\",\"volume\":\"7 1\",\"pages\":\"452-457\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITHERM.2014.6892316\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITHERM.2014.6892316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文对液滴直径对莱顿弗罗斯特温度及其位移的影响进行了实验研究。在304不锈钢抛光表面和经飞秒激光处理的不锈钢表面上进行了测试,以形成表面以上生长(ASG)纳米/微结构。为了确定莱顿弗罗斯特温度,对抛光表面和加工表面都采用了液滴寿命法。使用精密滴管改变液滴的大小,从1.5到4毫米。莱顿弗罗斯特温度显示,在液滴尺寸范围内,加工表面的位移高达85°C,而抛光表面的位移为45°C。这种变化的差异是由于液滴的动压和绝缘蒸汽层的蒸汽压之间的力平衡的性质造成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of droplet diameter on the Leidenfrost temperature of laser processed multiscale structured surfaces
In this paper, an experimental investigation of the effects of droplet diameters on the Leidenfrost temperature and its shifts has been carried out. Tests were conducted on a 304 stainless steel polished surface and a stainless steel surface which was processed by a femtosecond laser to form Above Surface Growth (ASG) nano/microstructures. To determine the Leidenfrost temperatures, the droplet lifetime method was employed for both the polished and processed surfaces. A precision dropper was used to vary the size of droplets from 1.5 to 4 millimeters. The Leidenfrost temperature was shown to display shifts as high as 85 °C on the processed surface over the range of droplet sizes, as opposed to a 45 °C shift on the polished surface. The difference between the shifts was attributed to the nature of the force balance between dynamic pressure of droplets and vapor pressure of the insulating vapor layer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信