Jingwen Chen, Jiawei Chen, Hongyang Chao, Ming Yang
{"title":"基于生成对抗网络的噪声建模图像盲去噪","authors":"Jingwen Chen, Jiawei Chen, Hongyang Chao, Ming Yang","doi":"10.1109/CVPR.2018.00333","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a typical image blind denoising problem, which is to remove unknown noise from noisy images. As we all know, discriminative learning based methods, such as DnCNN, can achieve state-of-the-art denoising results, but they are not applicable to this problem due to the lack of paired training data. To tackle the barrier, we propose a novel two-step framework. First, a Generative Adversarial Network (GAN) is trained to estimate the noise distribution over the input noisy images and to generate noise samples. Second, the noise patches sampled from the first step are utilized to construct a paired training dataset, which is used, in turn, to train a deep Convolutional Neural Network (CNN) for denoising. Extensive experiments have been done to demonstrate the superiority of our approach in image blind denoising.","PeriodicalId":6564,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","volume":"42 1","pages":"3155-3164"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"430","resultStr":"{\"title\":\"Image Blind Denoising with Generative Adversarial Network Based Noise Modeling\",\"authors\":\"Jingwen Chen, Jiawei Chen, Hongyang Chao, Ming Yang\",\"doi\":\"10.1109/CVPR.2018.00333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider a typical image blind denoising problem, which is to remove unknown noise from noisy images. As we all know, discriminative learning based methods, such as DnCNN, can achieve state-of-the-art denoising results, but they are not applicable to this problem due to the lack of paired training data. To tackle the barrier, we propose a novel two-step framework. First, a Generative Adversarial Network (GAN) is trained to estimate the noise distribution over the input noisy images and to generate noise samples. Second, the noise patches sampled from the first step are utilized to construct a paired training dataset, which is used, in turn, to train a deep Convolutional Neural Network (CNN) for denoising. Extensive experiments have been done to demonstrate the superiority of our approach in image blind denoising.\",\"PeriodicalId\":6564,\"journal\":{\"name\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition\",\"volume\":\"42 1\",\"pages\":\"3155-3164\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"430\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2018.00333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2018.00333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Image Blind Denoising with Generative Adversarial Network Based Noise Modeling
In this paper, we consider a typical image blind denoising problem, which is to remove unknown noise from noisy images. As we all know, discriminative learning based methods, such as DnCNN, can achieve state-of-the-art denoising results, but they are not applicable to this problem due to the lack of paired training data. To tackle the barrier, we propose a novel two-step framework. First, a Generative Adversarial Network (GAN) is trained to estimate the noise distribution over the input noisy images and to generate noise samples. Second, the noise patches sampled from the first step are utilized to construct a paired training dataset, which is used, in turn, to train a deep Convolutional Neural Network (CNN) for denoising. Extensive experiments have been done to demonstrate the superiority of our approach in image blind denoising.