K. Elsayed, Adam Dachowicz, M. Atallah, Jitesh H. Panchal
{"title":"面向安全制造的信息嵌入:挑战与研究机遇","authors":"K. Elsayed, Adam Dachowicz, M. Atallah, Jitesh H. Panchal","doi":"10.1115/1.4062600","DOIUrl":null,"url":null,"abstract":"\n The digitization of manufacturing has transformed the product realization process across many industries, from aerospace and automotive to medicine and healthcare. While this progress has accelerated product development cycles and enabled designers to create products with previously unachievable complexity and precision, it has also opened the door to a broad array of unique security concerns, from theft of intellectual property to supply chain attacks and counterfeiting. To address these concerns, information embedding (e.g., watermarks and fingerprints) has emerged as a promising solution that enhances product security and traceability. Information embedding techniques involve storing unique and secure information within parts, making these parts easier to track and to verify for authenticity. However, a successful information embedding scheme requires information to be transmitted in physical parts both securely and in a way that is accessible to end users. Ensuring these qualities introduces unique computational and engineering challenges. For instance, these qualities require the embedding scheme designer to have an accurate model of the cyber-physical processes needed to embed information during manufacturing and read that information later in the product life cycle, as well as models of the cyber-physical, economic, and/or industrial processes that may degrade that information through natural wear-and-tear, or through intentional attacks by determined adversaries. This paper discusses challenges and research opportunities for the engineering design and manufacturing community in developing methods for efficient information embedding in manufactured products.","PeriodicalId":54856,"journal":{"name":"Journal of Computing and Information Science in Engineering","volume":"1 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Information Embedding for Secure Manufacturing: Challenges and Research Opportunities\",\"authors\":\"K. Elsayed, Adam Dachowicz, M. Atallah, Jitesh H. Panchal\",\"doi\":\"10.1115/1.4062600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The digitization of manufacturing has transformed the product realization process across many industries, from aerospace and automotive to medicine and healthcare. While this progress has accelerated product development cycles and enabled designers to create products with previously unachievable complexity and precision, it has also opened the door to a broad array of unique security concerns, from theft of intellectual property to supply chain attacks and counterfeiting. To address these concerns, information embedding (e.g., watermarks and fingerprints) has emerged as a promising solution that enhances product security and traceability. Information embedding techniques involve storing unique and secure information within parts, making these parts easier to track and to verify for authenticity. However, a successful information embedding scheme requires information to be transmitted in physical parts both securely and in a way that is accessible to end users. Ensuring these qualities introduces unique computational and engineering challenges. For instance, these qualities require the embedding scheme designer to have an accurate model of the cyber-physical processes needed to embed information during manufacturing and read that information later in the product life cycle, as well as models of the cyber-physical, economic, and/or industrial processes that may degrade that information through natural wear-and-tear, or through intentional attacks by determined adversaries. This paper discusses challenges and research opportunities for the engineering design and manufacturing community in developing methods for efficient information embedding in manufactured products.\",\"PeriodicalId\":54856,\"journal\":{\"name\":\"Journal of Computing and Information Science in Engineering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computing and Information Science in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062600\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computing and Information Science in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062600","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Information Embedding for Secure Manufacturing: Challenges and Research Opportunities
The digitization of manufacturing has transformed the product realization process across many industries, from aerospace and automotive to medicine and healthcare. While this progress has accelerated product development cycles and enabled designers to create products with previously unachievable complexity and precision, it has also opened the door to a broad array of unique security concerns, from theft of intellectual property to supply chain attacks and counterfeiting. To address these concerns, information embedding (e.g., watermarks and fingerprints) has emerged as a promising solution that enhances product security and traceability. Information embedding techniques involve storing unique and secure information within parts, making these parts easier to track and to verify for authenticity. However, a successful information embedding scheme requires information to be transmitted in physical parts both securely and in a way that is accessible to end users. Ensuring these qualities introduces unique computational and engineering challenges. For instance, these qualities require the embedding scheme designer to have an accurate model of the cyber-physical processes needed to embed information during manufacturing and read that information later in the product life cycle, as well as models of the cyber-physical, economic, and/or industrial processes that may degrade that information through natural wear-and-tear, or through intentional attacks by determined adversaries. This paper discusses challenges and research opportunities for the engineering design and manufacturing community in developing methods for efficient information embedding in manufactured products.
期刊介绍:
The ASME Journal of Computing and Information Science in Engineering (JCISE) publishes articles related to Algorithms, Computational Methods, Computing Infrastructure, Computer-Interpretable Representations, Human-Computer Interfaces, Information Science, and/or System Architectures that aim to improve some aspect of product and system lifecycle (e.g., design, manufacturing, operation, maintenance, disposal, recycling etc.). Applications considered in JCISE manuscripts should be relevant to the mechanical engineering discipline. Papers can be focused on fundamental research leading to new methods, or adaptation of existing methods for new applications.
Scope: Advanced Computing Infrastructure; Artificial Intelligence; Big Data and Analytics; Collaborative Design; Computer Aided Design; Computer Aided Engineering; Computer Aided Manufacturing; Computational Foundations for Additive Manufacturing; Computational Foundations for Engineering Optimization; Computational Geometry; Computational Metrology; Computational Synthesis; Conceptual Design; Cybermanufacturing; Cyber Physical Security for Factories; Cyber Physical System Design and Operation; Data-Driven Engineering Applications; Engineering Informatics; Geometric Reasoning; GPU Computing for Design and Manufacturing; Human Computer Interfaces/Interactions; Industrial Internet of Things; Knowledge Engineering; Information Management; Inverse Methods for Engineering Applications; Machine Learning for Engineering Applications; Manufacturing Planning; Manufacturing Automation; Model-based Systems Engineering; Multiphysics Modeling and Simulation; Multiscale Modeling and Simulation; Multidisciplinary Optimization; Physics-Based Simulations; Process Modeling for Engineering Applications; Qualification, Verification and Validation of Computational Models; Symbolic Computing for Engineering Applications; Tolerance Modeling; Topology and Shape Optimization; Virtual and Augmented Reality Environments; Virtual Prototyping