异步迭代策略元启发式算法中的AFIRO性能研究

Q3 Engineering
Tasiransurini Ab Rahman, Nor Azlina Ab. Aziz, Z. Ibrahim
{"title":"异步迭代策略元启发式算法中的AFIRO性能研究","authors":"Tasiransurini Ab Rahman, Nor Azlina Ab. Aziz, Z. Ibrahim","doi":"10.37936/ecti-cit.2023173.251829","DOIUrl":null,"url":null,"abstract":"Asynchronous Finite Impulse Response Optimizer (AFIRO) is a metaheuristic algorithm that has been developed as a population-based solution with an asynchronous update mechanism. AFIRO is inspired by the Ultimate Unbiased Finite Impulse Response filter framework. AFIRO works with a group of agents where each agent performs the iteration update asynchronously. In the original paper, AFIRO was compared with the Particle Swarm Optimisation algorithm, Genetic Algorithm, and Grey Wolf Optimizer. Although AFIRO shows a better performance, the comparison seems unfair since the iteration strategy of AFIRO is different from those compared algorithms. Hence, this article further investigates the potential of AFIRO against three existent metaheuristic algorithms with the same iteration strategy, namely Asynchronous PSO (A-PSO), Asynchronous Gravitational Search Algorithm (A-GSA), and Asynchronous Simulated Kalman Filter (A-SKF). The CEC2014 test suite was applied to evaluate the performance, where the results revealed that AFIRO leads 18 out of 30 functions. The Holm post hoc showed that AFIRO performs significantly better than A-SKF and A-GSA while having the same performance as A- PSO. Moreover, the Friedman test disclosed that AFIRO has the highest ranking than A-PSO, A-SKF, and A-GSA. Therefore, it can be concluded that AFIRO performs well in the same iteration strategy category.","PeriodicalId":38808,"journal":{"name":"Transactions on Electrical Engineering, Electronics, and Communications","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Performance of AFIRO among Asynchronous Iteration Strategy Metaheuristic Algorithms\",\"authors\":\"Tasiransurini Ab Rahman, Nor Azlina Ab. Aziz, Z. Ibrahim\",\"doi\":\"10.37936/ecti-cit.2023173.251829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Asynchronous Finite Impulse Response Optimizer (AFIRO) is a metaheuristic algorithm that has been developed as a population-based solution with an asynchronous update mechanism. AFIRO is inspired by the Ultimate Unbiased Finite Impulse Response filter framework. AFIRO works with a group of agents where each agent performs the iteration update asynchronously. In the original paper, AFIRO was compared with the Particle Swarm Optimisation algorithm, Genetic Algorithm, and Grey Wolf Optimizer. Although AFIRO shows a better performance, the comparison seems unfair since the iteration strategy of AFIRO is different from those compared algorithms. Hence, this article further investigates the potential of AFIRO against three existent metaheuristic algorithms with the same iteration strategy, namely Asynchronous PSO (A-PSO), Asynchronous Gravitational Search Algorithm (A-GSA), and Asynchronous Simulated Kalman Filter (A-SKF). The CEC2014 test suite was applied to evaluate the performance, where the results revealed that AFIRO leads 18 out of 30 functions. The Holm post hoc showed that AFIRO performs significantly better than A-SKF and A-GSA while having the same performance as A- PSO. Moreover, the Friedman test disclosed that AFIRO has the highest ranking than A-PSO, A-SKF, and A-GSA. Therefore, it can be concluded that AFIRO performs well in the same iteration strategy category.\",\"PeriodicalId\":38808,\"journal\":{\"name\":\"Transactions on Electrical Engineering, Electronics, and Communications\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Electrical Engineering, Electronics, and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37936/ecti-cit.2023173.251829\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Electrical Engineering, Electronics, and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37936/ecti-cit.2023173.251829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

异步有限脉冲响应优化器(AFIRO)是一种元启发式算法,它是一种基于种群的解决方案,具有异步更新机制。AFIRO的灵感来自于终极无偏有限脉冲响应滤波器框架。AFIRO与一组代理一起工作,其中每个代理异步执行迭代更新。在原论文中,AFIRO算法与粒子群优化算法、遗传算法和灰狼优化算法进行了比较。虽然AFIRO表现出更好的性能,但由于AFIRO的迭代策略与被比较算法不同,因此比较似乎不公平。因此,本文进一步研究了AFIRO与现有的三种具有相同迭代策略的元启发式算法的潜力,即异步PSO (A-PSO),异步引力搜索算法(A-GSA)和异步模拟卡尔曼滤波(A-SKF)。CEC2014测试套件用于评估性能,结果显示AFIRO在30项功能中领先18项。Holm的事后分析表明,AFIRO的性能明显优于A- skf和A- gsa,而与A- PSO的性能相同。此外,弗里德曼测试显示,AFIRO的排名高于A-PSO、A-SKF和A-GSA。因此,可以得出结论,AFIRO在同一迭代策略类别中表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Performance of AFIRO among Asynchronous Iteration Strategy Metaheuristic Algorithms
Asynchronous Finite Impulse Response Optimizer (AFIRO) is a metaheuristic algorithm that has been developed as a population-based solution with an asynchronous update mechanism. AFIRO is inspired by the Ultimate Unbiased Finite Impulse Response filter framework. AFIRO works with a group of agents where each agent performs the iteration update asynchronously. In the original paper, AFIRO was compared with the Particle Swarm Optimisation algorithm, Genetic Algorithm, and Grey Wolf Optimizer. Although AFIRO shows a better performance, the comparison seems unfair since the iteration strategy of AFIRO is different from those compared algorithms. Hence, this article further investigates the potential of AFIRO against three existent metaheuristic algorithms with the same iteration strategy, namely Asynchronous PSO (A-PSO), Asynchronous Gravitational Search Algorithm (A-GSA), and Asynchronous Simulated Kalman Filter (A-SKF). The CEC2014 test suite was applied to evaluate the performance, where the results revealed that AFIRO leads 18 out of 30 functions. The Holm post hoc showed that AFIRO performs significantly better than A-SKF and A-GSA while having the same performance as A- PSO. Moreover, the Friedman test disclosed that AFIRO has the highest ranking than A-PSO, A-SKF, and A-GSA. Therefore, it can be concluded that AFIRO performs well in the same iteration strategy category.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transactions on Electrical Engineering, Electronics, and Communications
Transactions on Electrical Engineering, Electronics, and Communications Engineering-Electrical and Electronic Engineering
CiteScore
1.60
自引率
0.00%
发文量
45
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信