Seon Yeong Kim, Y. Jung, Min-Jae Cho, Jaewon Lee, Hong-Gyu Park, Dai‐Hyun Kim, Tae-Wan Kim, I. Yun, Dae‐Shik Seo
{"title":"光固化反应介晶- yinzno杂化材料作为薄膜晶体管的半导体通道","authors":"Seon Yeong Kim, Y. Jung, Min-Jae Cho, Jaewon Lee, Hong-Gyu Park, Dai‐Hyun Kim, Tae-Wan Kim, I. Yun, Dae‐Shik Seo","doi":"10.1149/2.0031503SSL","DOIUrl":null,"url":null,"abstract":"Electrical performance of thin-film transistors (TFTs) is important for their applications. Solution-processed TFTs have low mobility and high sub-threshold swings (S.Ss) because there are many pores and pin-holes in the films. These characteristics are attributed to electron trapping in the YInZnO (YIZO) channel, the SiO2 gate insulator, or their interface. We fabricated hybrid YIZO TFTs with and without UV radiation, and observed that UV-curing of the film affected TFT performance through promoting a response to reactive mesogen (RM). The UV irradiated TFT showed better performance because of the alignment of the channel materials in the source-drain direction. © The Author(s) 2015. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. [DOI: 10.1149/2.0031503ssl] All rights reserved.","PeriodicalId":11423,"journal":{"name":"ECS Solid State Letters","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uv-cured reactive mesogen-YInZnO hybrid materials as semiconducting channels in thin-film transistors using a solution-process\",\"authors\":\"Seon Yeong Kim, Y. Jung, Min-Jae Cho, Jaewon Lee, Hong-Gyu Park, Dai‐Hyun Kim, Tae-Wan Kim, I. Yun, Dae‐Shik Seo\",\"doi\":\"10.1149/2.0031503SSL\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrical performance of thin-film transistors (TFTs) is important for their applications. Solution-processed TFTs have low mobility and high sub-threshold swings (S.Ss) because there are many pores and pin-holes in the films. These characteristics are attributed to electron trapping in the YInZnO (YIZO) channel, the SiO2 gate insulator, or their interface. We fabricated hybrid YIZO TFTs with and without UV radiation, and observed that UV-curing of the film affected TFT performance through promoting a response to reactive mesogen (RM). The UV irradiated TFT showed better performance because of the alignment of the channel materials in the source-drain direction. © The Author(s) 2015. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. [DOI: 10.1149/2.0031503ssl] All rights reserved.\",\"PeriodicalId\":11423,\"journal\":{\"name\":\"ECS Solid State Letters\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ECS Solid State Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1149/2.0031503SSL\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Solid State Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/2.0031503SSL","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0