{"title":"准抛物面在地形障碍调平中的应用","authors":"Piotr Banasik, K. Bujakowski","doi":"10.1515/rgg-2017-0015","DOIUrl":null,"url":null,"abstract":"Abstract In these paper are presented two ways of performing leveling through terrain obstacles. They use properties of the quasigeoid course with respect to the ellipsoid within a given area. The analysis of changes in quasigeoid to ellipsoid slope have been made on the basis of the national quasigeoid models, calculating the slope components ξ, η. This allows to present practical recommendations for location of intermediate benchmarks in the leveling methods through obstacles.","PeriodicalId":42010,"journal":{"name":"Reports on Geodesy and Geoinformatics","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2017-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The Use of Quasigeoid in Leveling Through Terrain Obstacles\",\"authors\":\"Piotr Banasik, K. Bujakowski\",\"doi\":\"10.1515/rgg-2017-0015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In these paper are presented two ways of performing leveling through terrain obstacles. They use properties of the quasigeoid course with respect to the ellipsoid within a given area. The analysis of changes in quasigeoid to ellipsoid slope have been made on the basis of the national quasigeoid models, calculating the slope components ξ, η. This allows to present practical recommendations for location of intermediate benchmarks in the leveling methods through obstacles.\",\"PeriodicalId\":42010,\"journal\":{\"name\":\"Reports on Geodesy and Geoinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2017-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reports on Geodesy and Geoinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/rgg-2017-0015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on Geodesy and Geoinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/rgg-2017-0015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
The Use of Quasigeoid in Leveling Through Terrain Obstacles
Abstract In these paper are presented two ways of performing leveling through terrain obstacles. They use properties of the quasigeoid course with respect to the ellipsoid within a given area. The analysis of changes in quasigeoid to ellipsoid slope have been made on the basis of the national quasigeoid models, calculating the slope components ξ, η. This allows to present practical recommendations for location of intermediate benchmarks in the leveling methods through obstacles.