具有广义Möbius函数的非结合关联近环

IF 0.6 3区 数学 Q3 MATHEMATICS
John H. Johnson, Max Wakefield
{"title":"具有广义Möbius函数的非结合关联近环","authors":"John H. Johnson, Max Wakefield","doi":"10.26493/1855-3974.2894.b07","DOIUrl":null,"url":null,"abstract":"There is a convolution product on 3-variable partial flag functions of a locally finite poset that produces a generalized M\\\"obius function. Under the product this generalized M\\\"obius function is a one sided inverse of the zeta function and satisfies many generalizations of classical results. In particular we prove analogues of Phillip Hall's Theorem on the M\\\"obius function as an alternating sum of chain counts, Weisner's theorem, and Rota's Crosscut Theorem. A key ingredient to these results is that this function is an overlapping product of classical M\\\"obius functions. Using this generalized M\\\"obius function we define analogues of the characteristic polynomial and M\\\"obius polynomials for ranked lattices. We compute these polynomials for certain families of matroids and prove that this generalized M\\\"obius polynomial has -1 as root if the matroid is modular. Using results from Ardila and Sanchez we prove that this generalized characteristic polynomial is a matroid valuation.","PeriodicalId":49239,"journal":{"name":"Ars Mathematica Contemporanea","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A non-associative incidence near-ring with a generalized Möbius function\",\"authors\":\"John H. Johnson, Max Wakefield\",\"doi\":\"10.26493/1855-3974.2894.b07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is a convolution product on 3-variable partial flag functions of a locally finite poset that produces a generalized M\\\\\\\"obius function. Under the product this generalized M\\\\\\\"obius function is a one sided inverse of the zeta function and satisfies many generalizations of classical results. In particular we prove analogues of Phillip Hall's Theorem on the M\\\\\\\"obius function as an alternating sum of chain counts, Weisner's theorem, and Rota's Crosscut Theorem. A key ingredient to these results is that this function is an overlapping product of classical M\\\\\\\"obius functions. Using this generalized M\\\\\\\"obius function we define analogues of the characteristic polynomial and M\\\\\\\"obius polynomials for ranked lattices. We compute these polynomials for certain families of matroids and prove that this generalized M\\\\\\\"obius polynomial has -1 as root if the matroid is modular. Using results from Ardila and Sanchez we prove that this generalized characteristic polynomial is a matroid valuation.\",\"PeriodicalId\":49239,\"journal\":{\"name\":\"Ars Mathematica Contemporanea\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ars Mathematica Contemporanea\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.26493/1855-3974.2894.b07\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ars Mathematica Contemporanea","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.26493/1855-3974.2894.b07","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

在局部有限偏序集的3变量偏标志函数上有一个卷积积,可以得到一个广义的M\ obius函数。在积下,广义M\ obius函数是ζ函数的单侧逆,满足经典结果的许多推广。特别地,我们证明了Phillip Hall定理在M\ ' obius函数上作为链计数的交替和、Weisner定理和Rota横切定理的类似物。这些结果的一个关键因素是这个函数是经典M\ ' obius函数的重叠积。利用这个广义的M\ obius函数,我们定义了秩格的特征多项式和M\ obius多项式的类似物。我们对某些拟阵族计算了这些多项式,并证明了当拟阵是模时,这个广义M\ obius多项式的根为-1。利用Ardila和Sanchez的结果证明了该广义特征多项式是一个拟阵估值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A non-associative incidence near-ring with a generalized Möbius function
There is a convolution product on 3-variable partial flag functions of a locally finite poset that produces a generalized M\"obius function. Under the product this generalized M\"obius function is a one sided inverse of the zeta function and satisfies many generalizations of classical results. In particular we prove analogues of Phillip Hall's Theorem on the M\"obius function as an alternating sum of chain counts, Weisner's theorem, and Rota's Crosscut Theorem. A key ingredient to these results is that this function is an overlapping product of classical M\"obius functions. Using this generalized M\"obius function we define analogues of the characteristic polynomial and M\"obius polynomials for ranked lattices. We compute these polynomials for certain families of matroids and prove that this generalized M\"obius polynomial has -1 as root if the matroid is modular. Using results from Ardila and Sanchez we prove that this generalized characteristic polynomial is a matroid valuation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ars Mathematica Contemporanea
Ars Mathematica Contemporanea MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.70
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: Ars mathematica contemporanea will publish high-quality articles in contemporary mathematics that arise from the discrete and concrete mathematics paradigm. It will favor themes that combine at least two different fields of mathematics. In particular, we welcome papers intersecting discrete mathematics with other branches of mathematics, such as algebra, geometry, topology, theoretical computer science, and combinatorics. The name of the journal was chosen carefully. Symmetry is certainly a theme that is quite welcome to the journal, as it is through symmetry that mathematics comes closest to art.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信