基于过程神经网络的股票价格预测

Jiuzhen Liang, Weiguo Song, Mei Wang
{"title":"基于过程神经网络的股票价格预测","authors":"Jiuzhen Liang, Weiguo Song, Mei Wang","doi":"10.1155/2011/814769","DOIUrl":null,"url":null,"abstract":"We present a spatiotemporal model, namely, procedural neural networks for stock price prediction. Compared with some successful traditional models on simulating stock market, such as BNN (backpropagation neural networks, HMM (hidden Markov model) and SVM (support vector machine)), the procedural neural network model processes both spacial and temporal information synchronously without slide time window, which is typically used in the well-known recurrent neural networks. Two different structures of procedural neural networks are constructed for modeling multidimensional time series problems. Learning algorithms for training the models and sustained improvement of learning are presented and discussed. Experiments on Yahoo stock market of the past decade years are implemented, and simulation results are compared by PNN, BNN, HMM, and SVM.","PeriodicalId":7288,"journal":{"name":"Adv. Artif. Neural Syst.","volume":"60 1","pages":"814769:1-814769:11"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Stock Price Prediction Based on Procedural Neural Networks\",\"authors\":\"Jiuzhen Liang, Weiguo Song, Mei Wang\",\"doi\":\"10.1155/2011/814769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a spatiotemporal model, namely, procedural neural networks for stock price prediction. Compared with some successful traditional models on simulating stock market, such as BNN (backpropagation neural networks, HMM (hidden Markov model) and SVM (support vector machine)), the procedural neural network model processes both spacial and temporal information synchronously without slide time window, which is typically used in the well-known recurrent neural networks. Two different structures of procedural neural networks are constructed for modeling multidimensional time series problems. Learning algorithms for training the models and sustained improvement of learning are presented and discussed. Experiments on Yahoo stock market of the past decade years are implemented, and simulation results are compared by PNN, BNN, HMM, and SVM.\",\"PeriodicalId\":7288,\"journal\":{\"name\":\"Adv. Artif. Neural Syst.\",\"volume\":\"60 1\",\"pages\":\"814769:1-814769:11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adv. Artif. Neural Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2011/814769\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adv. Artif. Neural Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2011/814769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

我们提出了一个时空模型,即程序神经网络的股票价格预测。与传统的反向传播神经网络(BNN)、隐马尔可夫模型(HMM)和支持向量机(SVM)等成功的股票市场模拟模型相比,程序神经网络模型同步处理空间和时间信息,没有滑动时间窗,这是众所周知的递归神经网络的典型特征。构建了两种不同结构的程序神经网络,用于多维时间序列问题的建模。提出并讨论了用于训练模型和持续改进学习的学习算法。对近十年雅虎股票市场进行了实验,并采用PNN、BNN、HMM和SVM对模拟结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stock Price Prediction Based on Procedural Neural Networks
We present a spatiotemporal model, namely, procedural neural networks for stock price prediction. Compared with some successful traditional models on simulating stock market, such as BNN (backpropagation neural networks, HMM (hidden Markov model) and SVM (support vector machine)), the procedural neural network model processes both spacial and temporal information synchronously without slide time window, which is typically used in the well-known recurrent neural networks. Two different structures of procedural neural networks are constructed for modeling multidimensional time series problems. Learning algorithms for training the models and sustained improvement of learning are presented and discussed. Experiments on Yahoo stock market of the past decade years are implemented, and simulation results are compared by PNN, BNN, HMM, and SVM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信