{"title":"双目标多臂强盗:学习近似字典最优分配","authors":"Cem Tekin","doi":"10.3906/ELK-1806-221","DOIUrl":null,"url":null,"abstract":"We consider a biobjective sequential decision-making problem where an allocation (arm) is called ε lexi- cographic optimal if its expected reward in the first objective is at most ε smaller than the highest expected reward, and its expected reward in the second objective is at least the expected reward of a lexicographic optimal arm. The goal of the learner is to select arms that are ε lexicographic optimal as much as possible without knowing the arm reward distributions beforehand. For this problem, we first show that the learner’s goal is equivalent to minimizing the ε lexicographic regret, and then, propose a learning algorithm whose ε lexicographic gap-dependent regret is bounded and gap-independent regret is sublinear in the number of rounds with high probability. Then, we apply the proposed model and algorithm for dynamic rate and channel selection in a cognitive radio network with imperfect channel sensing. Our results show that the proposed algorithm is able to learn the approximate lexicographic optimal rate–channel pair that simultaneously minimizes the primary user interference and maximizes the secondary user throughput.","PeriodicalId":49410,"journal":{"name":"Turkish Journal of Electrical Engineering and Computer Sciences","volume":"23 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The biobjective multiarmed bandit: learning approximate lexicographic optimal allocations\",\"authors\":\"Cem Tekin\",\"doi\":\"10.3906/ELK-1806-221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a biobjective sequential decision-making problem where an allocation (arm) is called ε lexi- cographic optimal if its expected reward in the first objective is at most ε smaller than the highest expected reward, and its expected reward in the second objective is at least the expected reward of a lexicographic optimal arm. The goal of the learner is to select arms that are ε lexicographic optimal as much as possible without knowing the arm reward distributions beforehand. For this problem, we first show that the learner’s goal is equivalent to minimizing the ε lexicographic regret, and then, propose a learning algorithm whose ε lexicographic gap-dependent regret is bounded and gap-independent regret is sublinear in the number of rounds with high probability. Then, we apply the proposed model and algorithm for dynamic rate and channel selection in a cognitive radio network with imperfect channel sensing. Our results show that the proposed algorithm is able to learn the approximate lexicographic optimal rate–channel pair that simultaneously minimizes the primary user interference and maximizes the secondary user throughput.\",\"PeriodicalId\":49410,\"journal\":{\"name\":\"Turkish Journal of Electrical Engineering and Computer Sciences\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Electrical Engineering and Computer Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3906/ELK-1806-221\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Electrical Engineering and Computer Sciences","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3906/ELK-1806-221","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
The biobjective multiarmed bandit: learning approximate lexicographic optimal allocations
We consider a biobjective sequential decision-making problem where an allocation (arm) is called ε lexi- cographic optimal if its expected reward in the first objective is at most ε smaller than the highest expected reward, and its expected reward in the second objective is at least the expected reward of a lexicographic optimal arm. The goal of the learner is to select arms that are ε lexicographic optimal as much as possible without knowing the arm reward distributions beforehand. For this problem, we first show that the learner’s goal is equivalent to minimizing the ε lexicographic regret, and then, propose a learning algorithm whose ε lexicographic gap-dependent regret is bounded and gap-independent regret is sublinear in the number of rounds with high probability. Then, we apply the proposed model and algorithm for dynamic rate and channel selection in a cognitive radio network with imperfect channel sensing. Our results show that the proposed algorithm is able to learn the approximate lexicographic optimal rate–channel pair that simultaneously minimizes the primary user interference and maximizes the secondary user throughput.
期刊介绍:
The Turkish Journal of Electrical Engineering & Computer Sciences is published electronically 6 times a year by the Scientific and Technological Research Council of Turkey (TÜBİTAK)
Accepts English-language manuscripts in the areas of power and energy, environmental sustainability and energy efficiency, electronics, industry applications, control systems, information and systems, applied electromagnetics, communications, signal and image processing, tomographic image reconstruction, face recognition, biometrics, speech processing, video processing and analysis, object recognition, classification, feature extraction, parallel and distributed computing, cognitive systems, interaction, robotics, digital libraries and content, personalized healthcare, ICT for mobility, sensors, and artificial intelligence.
Contribution is open to researchers of all nationalities.