相似聚类预测咖啡因的QSAR

Teodora E. Harsa, Alexandra M. Harsa, Beata Szefler
{"title":"相似聚类预测咖啡因的QSAR","authors":"Teodora E. Harsa, Alexandra M. Harsa, Beata Szefler","doi":"10.2478/s11532-013-0389-y","DOIUrl":null,"url":null,"abstract":"AbstractA novel QSAR approach based on correlation weighting and alignment over a hypermolecule that mimics the investigated correlational space was performed on a set of 40 caffeines downloaded from the PubChem database. The best models describing log P and LD50 values of this set of caffeine derivatives were validated against the external test set and in a new predictive model by using clusters of similarity.\n","PeriodicalId":9888,"journal":{"name":"Central European Journal of Chemistry","volume":"22 1","pages":"365-376"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"QSAR of caffeines by similarity cluster prediction\",\"authors\":\"Teodora E. Harsa, Alexandra M. Harsa, Beata Szefler\",\"doi\":\"10.2478/s11532-013-0389-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractA novel QSAR approach based on correlation weighting and alignment over a hypermolecule that mimics the investigated correlational space was performed on a set of 40 caffeines downloaded from the PubChem database. The best models describing log P and LD50 values of this set of caffeine derivatives were validated against the external test set and in a new predictive model by using clusters of similarity.\\n\",\"PeriodicalId\":9888,\"journal\":{\"name\":\"Central European Journal of Chemistry\",\"volume\":\"22 1\",\"pages\":\"365-376\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Central European Journal of Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/s11532-013-0389-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/s11532-013-0389-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在PubChem数据库下载的一组40种咖啡因上,研究了一种基于相关加权和对齐的新型QSAR方法,该方法模拟了所研究的相关空间。在外部测试集和新的预测模型中,利用相似性聚类验证了描述该咖啡因衍生物的logp和LD50值的最佳模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
QSAR of caffeines by similarity cluster prediction
AbstractA novel QSAR approach based on correlation weighting and alignment over a hypermolecule that mimics the investigated correlational space was performed on a set of 40 caffeines downloaded from the PubChem database. The best models describing log P and LD50 values of this set of caffeine derivatives were validated against the external test set and in a new predictive model by using clusters of similarity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
3 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信