Semiconductor-neural接口

J. Winter, C. E. Flynn, T.S. Liu, A. Belcher, B. Korgel, C. Schmidt
{"title":"Semiconductor-neural接口","authors":"J. Winter, C. E. Flynn, T.S. Liu, A. Belcher, B. Korgel, C. Schmidt","doi":"10.1109/IEMBS.2002.1106611","DOIUrl":null,"url":null,"abstract":"Continued advances in the design of prosthetic devices will demand increasingly smaller and more precise connections. We are developing a single cell device capable of specific molecular interactions using semiconductor quantum dots (qdots). The qdots are placed in direct proximity to individual cellular receptors using biorecognition molecules. These molecules may be incorporated into the passivation layer of the quantum dot or may be presented as an external molecule. In this manner, we have successfully created qdot-nerve cell interfaces utilizing both peptides and antibodies. Ultimately, the qdots will be excited optically, eliciting a change in the nerve cell membrane potential. The change in nerve cell membrane potential will be measured using a microelectrode array currently under development. These devices will allow researchers to determine the effect of electrical excitation on individual nerve-cell receptors and enhance development of molecular neuroprosthetics.","PeriodicalId":60385,"journal":{"name":"中国地球物理学会年刊","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semiconductor-neural interfaces\",\"authors\":\"J. Winter, C. E. Flynn, T.S. Liu, A. Belcher, B. Korgel, C. Schmidt\",\"doi\":\"10.1109/IEMBS.2002.1106611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Continued advances in the design of prosthetic devices will demand increasingly smaller and more precise connections. We are developing a single cell device capable of specific molecular interactions using semiconductor quantum dots (qdots). The qdots are placed in direct proximity to individual cellular receptors using biorecognition molecules. These molecules may be incorporated into the passivation layer of the quantum dot or may be presented as an external molecule. In this manner, we have successfully created qdot-nerve cell interfaces utilizing both peptides and antibodies. Ultimately, the qdots will be excited optically, eliciting a change in the nerve cell membrane potential. The change in nerve cell membrane potential will be measured using a microelectrode array currently under development. These devices will allow researchers to determine the effect of electrical excitation on individual nerve-cell receptors and enhance development of molecular neuroprosthetics.\",\"PeriodicalId\":60385,\"journal\":{\"name\":\"中国地球物理学会年刊\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"中国地球物理学会年刊\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMBS.2002.1106611\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国地球物理学会年刊","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1109/IEMBS.2002.1106611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

假肢装置设计的持续进步将要求越来越小和更精确的连接。我们正在开发一种单细胞装置,能够使用半导体量子点(qdots)进行特定的分子相互作用。使用生物识别分子将量子点直接放置在单个细胞受体附近。这些分子可以并入到量子点的钝化层中,或者可以作为外部分子呈现。通过这种方式,我们成功地利用肽和抗体创建了qdot-神经细胞界面。最终,量子点将被光学激发,引起神经细胞膜电位的变化。神经细胞膜电位的变化将使用目前正在开发的微电极阵列来测量。这些装置将使研究人员能够确定电兴奋对单个神经细胞受体的影响,并促进分子神经假肢的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semiconductor-neural interfaces
Continued advances in the design of prosthetic devices will demand increasingly smaller and more precise connections. We are developing a single cell device capable of specific molecular interactions using semiconductor quantum dots (qdots). The qdots are placed in direct proximity to individual cellular receptors using biorecognition molecules. These molecules may be incorporated into the passivation layer of the quantum dot or may be presented as an external molecule. In this manner, we have successfully created qdot-nerve cell interfaces utilizing both peptides and antibodies. Ultimately, the qdots will be excited optically, eliciting a change in the nerve cell membrane potential. The change in nerve cell membrane potential will be measured using a microelectrode array currently under development. These devices will allow researchers to determine the effect of electrical excitation on individual nerve-cell receptors and enhance development of molecular neuroprosthetics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
368
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信