从巴比伦的月球观测到Floquet乘数和Conley-Zehnder指数

IF 0.5 4区 数学 Q3 MATHEMATICS
Cengiz Aydin
{"title":"从巴比伦的月球观测到Floquet乘数和Conley-Zehnder指数","authors":"Cengiz Aydin","doi":"10.1063/5.0156959","DOIUrl":null,"url":null,"abstract":"In 1878, Hill found numerically, in his limiting case of the restricted three-body problem, the so-called Hill’s lunar problem, a planar direct periodic orbit with a period of one synodic month. By virtue of the spatial system’s invariance under a symplectic involution, whose fixed point set corresponds to the planar problem, we can assign to Hill’s orbit planar and spatial Floquet multipliers and planar and spatial Conley–Zehnder indices. We show that these have deep astronomical significance because, on the one hand, we relate the anomalistic month to the planar Floquet multipliers and the planar Conley–Zehnder index. On the other hand, we relate the draconitic month to the spatial Floquet multipliers and the spatial Conley–Zehnder index. Knowledge of this lunar month dates back to the Babylonians, who lived until around 500 BCE. In order to determine the indices, we analyze analytically the bifurcation procedure of the fundamental families of planar direct and retrograde periodic orbits (traditionally known as families g and f) from the rotating Kepler problem for very low energies.","PeriodicalId":50141,"journal":{"name":"Journal of Mathematical Physics Analysis Geometry","volume":"60 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From Babylonian lunar observations to Floquet multipliers and Conley–Zehnder indices\",\"authors\":\"Cengiz Aydin\",\"doi\":\"10.1063/5.0156959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 1878, Hill found numerically, in his limiting case of the restricted three-body problem, the so-called Hill’s lunar problem, a planar direct periodic orbit with a period of one synodic month. By virtue of the spatial system’s invariance under a symplectic involution, whose fixed point set corresponds to the planar problem, we can assign to Hill’s orbit planar and spatial Floquet multipliers and planar and spatial Conley–Zehnder indices. We show that these have deep astronomical significance because, on the one hand, we relate the anomalistic month to the planar Floquet multipliers and the planar Conley–Zehnder index. On the other hand, we relate the draconitic month to the spatial Floquet multipliers and the spatial Conley–Zehnder index. Knowledge of this lunar month dates back to the Babylonians, who lived until around 500 BCE. In order to determine the indices, we analyze analytically the bifurcation procedure of the fundamental families of planar direct and retrograde periodic orbits (traditionally known as families g and f) from the rotating Kepler problem for very low energies.\",\"PeriodicalId\":50141,\"journal\":{\"name\":\"Journal of Mathematical Physics Analysis Geometry\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Physics Analysis Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0156959\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Physics Analysis Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0156959","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

1878年,希尔在他的限制性三体问题的极限情况下,即所谓的希尔月球问题中,用数值方法发现了一个平面的直接周期轨道,其周期为一个朔望月。利用空间系统在辛对合下的不变性,其不动点集对应于平面问题,我们可以给Hill轨道分配平面和空间的Floquet乘子以及平面和空间的Conley-Zehnder指标。我们表明这些具有深刻的天文学意义,因为一方面,我们将异常月份与平面Floquet乘数和面Conley-Zehnder指数联系起来。另一方面,我们将灾月与空间Floquet乘数和空间Conley-Zehnder指数联系起来。这个农历月的知识可以追溯到巴比伦人,他们生活在公元前500年左右。为了确定这些指标,我们从非常低能量的旋转开普勒问题中解析地分析了平面正反行周期轨道(传统上称为g族和f族)的基本族的分岔过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From Babylonian lunar observations to Floquet multipliers and Conley–Zehnder indices
In 1878, Hill found numerically, in his limiting case of the restricted three-body problem, the so-called Hill’s lunar problem, a planar direct periodic orbit with a period of one synodic month. By virtue of the spatial system’s invariance under a symplectic involution, whose fixed point set corresponds to the planar problem, we can assign to Hill’s orbit planar and spatial Floquet multipliers and planar and spatial Conley–Zehnder indices. We show that these have deep astronomical significance because, on the one hand, we relate the anomalistic month to the planar Floquet multipliers and the planar Conley–Zehnder index. On the other hand, we relate the draconitic month to the spatial Floquet multipliers and the spatial Conley–Zehnder index. Knowledge of this lunar month dates back to the Babylonians, who lived until around 500 BCE. In order to determine the indices, we analyze analytically the bifurcation procedure of the fundamental families of planar direct and retrograde periodic orbits (traditionally known as families g and f) from the rotating Kepler problem for very low energies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
20.00%
发文量
18
审稿时长
>12 weeks
期刊介绍: Journal of Mathematical Physics, Analysis, Geometry (JMPAG) publishes original papers and reviews on the main subjects: mathematical problems of modern physics; complex analysis and its applications; asymptotic problems of differential equations; spectral theory including inverse problems and their applications; geometry in large and differential geometry; functional analysis, theory of representations, and operator algebras including ergodic theory. The Journal aims at a broad readership of actively involved in scientific research and/or teaching at all levels scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信