{"title":"涡旋超流的量子干涉","authors":"G. Papari, V. Fomin","doi":"10.1002/pssr.202300038","DOIUrl":null,"url":null,"abstract":"We analyze the origin of the parabolic background of magnetoresistance oscillations measured in finite-width superconducting mesoscopic rings with input and output stubs and in patterned films. The transmission model explaining the sinusoidal oscillation of magnetoresistance is extended to address the parabolic background as a function of the magnetic field. Apart from the interference mechanism activated by the ring, pinned superconducting vortices as topological defects introduce a further interference-based distribution of supercurrents that affects, in turn, the voltmeter-sensed quasiparticles. The onset of vortices changes the topology of the superconducting state in a mesoscopic ring in a such a way that the full magnetoresistance dynamics can be interpreted owing to the interference of the constituents of the order parameter induced by both the ring with its doubly-connected topology and the vortex lattice in it.","PeriodicalId":20059,"journal":{"name":"physica status solidi (RRL) – Rapid Research Letters","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum Interference by Vortex Supercurrents\",\"authors\":\"G. Papari, V. Fomin\",\"doi\":\"10.1002/pssr.202300038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze the origin of the parabolic background of magnetoresistance oscillations measured in finite-width superconducting mesoscopic rings with input and output stubs and in patterned films. The transmission model explaining the sinusoidal oscillation of magnetoresistance is extended to address the parabolic background as a function of the magnetic field. Apart from the interference mechanism activated by the ring, pinned superconducting vortices as topological defects introduce a further interference-based distribution of supercurrents that affects, in turn, the voltmeter-sensed quasiparticles. The onset of vortices changes the topology of the superconducting state in a mesoscopic ring in a such a way that the full magnetoresistance dynamics can be interpreted owing to the interference of the constituents of the order parameter induced by both the ring with its doubly-connected topology and the vortex lattice in it.\",\"PeriodicalId\":20059,\"journal\":{\"name\":\"physica status solidi (RRL) – Rapid Research Letters\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"physica status solidi (RRL) – Rapid Research Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/pssr.202300038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"physica status solidi (RRL) – Rapid Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pssr.202300038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We analyze the origin of the parabolic background of magnetoresistance oscillations measured in finite-width superconducting mesoscopic rings with input and output stubs and in patterned films. The transmission model explaining the sinusoidal oscillation of magnetoresistance is extended to address the parabolic background as a function of the magnetic field. Apart from the interference mechanism activated by the ring, pinned superconducting vortices as topological defects introduce a further interference-based distribution of supercurrents that affects, in turn, the voltmeter-sensed quasiparticles. The onset of vortices changes the topology of the superconducting state in a mesoscopic ring in a such a way that the full magnetoresistance dynamics can be interpreted owing to the interference of the constituents of the order parameter induced by both the ring with its doubly-connected topology and the vortex lattice in it.