元塑性量子化中的希钦联系

IF 1 2区 数学 Q1 MATHEMATICS
Quantum Topology Pub Date : 2012-05-30 DOI:10.4171/QT/31
J. Andersen, N. Gammelgaard, Magnus Roed Lauridsen
{"title":"元塑性量子化中的希钦联系","authors":"J. Andersen, N. Gammelgaard, Magnus Roed Lauridsen","doi":"10.4171/QT/31","DOIUrl":null,"url":null,"abstract":"We give a differential geometric construction of a connection, which we call the Hitchin connection, in the bundle of quantum Hilbert spaces arising from metaplectically corrected geometric quantization of a prequantizable, symplectic manifold, endowed with a rigid family of Kähler structures, all of which give vanishing first Dolbeault cohomology groups. This generalizes work of both Hitchin, Scheinost and Schottenloher, and Andersen, since our construction does not need that the first Chern class is proportional to the class of the symplectic form, nor do we need compactness of the symplectic manifold in question. Furthermore, when we are in a setting similar to the moduli space, we give an explicit formula and show that this connection agrees with previous constructions. Mathematics Subject Classification (2010). 53D50, 32Q55.","PeriodicalId":51331,"journal":{"name":"Quantum Topology","volume":"20 1","pages":"327-357"},"PeriodicalIF":1.0000,"publicationDate":"2012-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Hitchin’s connection in metaplectic quantization\",\"authors\":\"J. Andersen, N. Gammelgaard, Magnus Roed Lauridsen\",\"doi\":\"10.4171/QT/31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a differential geometric construction of a connection, which we call the Hitchin connection, in the bundle of quantum Hilbert spaces arising from metaplectically corrected geometric quantization of a prequantizable, symplectic manifold, endowed with a rigid family of Kähler structures, all of which give vanishing first Dolbeault cohomology groups. This generalizes work of both Hitchin, Scheinost and Schottenloher, and Andersen, since our construction does not need that the first Chern class is proportional to the class of the symplectic form, nor do we need compactness of the symplectic manifold in question. Furthermore, when we are in a setting similar to the moduli space, we give an explicit formula and show that this connection agrees with previous constructions. Mathematics Subject Classification (2010). 53D50, 32Q55.\",\"PeriodicalId\":51331,\"journal\":{\"name\":\"Quantum Topology\",\"volume\":\"20 1\",\"pages\":\"327-357\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2012-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Topology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/QT/31\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Topology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/QT/31","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 28

摘要

我们给出了量子希尔伯特空间束中一个连接的微分几何构造,我们称之为Hitchin连接,这个连接是由一个可预量化的辛流形的形而上学校正几何量子化产生的,该流形具有刚性族Kähler结构,所有这些结构都具有消失的第一Dolbeault上同群。这推广了Hitchin, Scheinost, Schottenloher和Andersen的工作,因为我们的构造不需要第一个陈氏类与辛形式的类成比例,也不需要所讨论的辛流形的紧性。此外,当我们在类似模空间的设置中,我们给出了一个显式公式,并证明了这种联系与前面的构造一致。数学学科分类(2010)。53 d50, 32 q55。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hitchin’s connection in metaplectic quantization
We give a differential geometric construction of a connection, which we call the Hitchin connection, in the bundle of quantum Hilbert spaces arising from metaplectically corrected geometric quantization of a prequantizable, symplectic manifold, endowed with a rigid family of Kähler structures, all of which give vanishing first Dolbeault cohomology groups. This generalizes work of both Hitchin, Scheinost and Schottenloher, and Andersen, since our construction does not need that the first Chern class is proportional to the class of the symplectic form, nor do we need compactness of the symplectic manifold in question. Furthermore, when we are in a setting similar to the moduli space, we give an explicit formula and show that this connection agrees with previous constructions. Mathematics Subject Classification (2010). 53D50, 32Q55.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum Topology
Quantum Topology Mathematics-Geometry and Topology
CiteScore
1.80
自引率
9.10%
发文量
8
期刊介绍: Quantum Topology is a peer reviewed journal dedicated to publishing original research articles, short communications, and surveys in quantum topology and related areas of mathematics. Topics covered include in particular: Low-dimensional Topology Knot Theory Jones Polynomial and Khovanov Homology Topological Quantum Field Theory Quantum Groups and Hopf Algebras Mapping Class Groups and Teichmüller space Categorification Braid Groups and Braided Categories Fusion Categories Subfactors and Planar Algebras Contact and Symplectic Topology Topological Methods in Physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信