{"title":"SL(2,𝑞)表示的Stiefel-Whitney类","authors":"Neha Malik, S. Spallone","doi":"10.1515/jgth-2022-0164","DOIUrl":null,"url":null,"abstract":"Abstract We describe the Stiefel–Whitney classes (SWCs) of orthogonal representations 𝜋 of the finite special linear groups G = SL ( 2 , F q ) G=\\operatorname{SL}(2,\\mathbb{F}_{q}) , in terms of character values of 𝜋. From this calculation, we can answer interesting questions about SWCs of 𝜋. For instance, we determine the subalgebra of H * ( G , Z / 2 Z ) H^{*}(G,\\mathbb{Z}/2\\mathbb{Z}) generated by the SWCs of orthogonal 𝜋, and we also determine which 𝜋 have non-trivial mod 2 Euler class.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Stiefel–Whitney classes of representations of SL(2, 𝑞)\",\"authors\":\"Neha Malik, S. Spallone\",\"doi\":\"10.1515/jgth-2022-0164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We describe the Stiefel–Whitney classes (SWCs) of orthogonal representations 𝜋 of the finite special linear groups G = SL ( 2 , F q ) G=\\\\operatorname{SL}(2,\\\\mathbb{F}_{q}) , in terms of character values of 𝜋. From this calculation, we can answer interesting questions about SWCs of 𝜋. For instance, we determine the subalgebra of H * ( G , Z / 2 Z ) H^{*}(G,\\\\mathbb{Z}/2\\\\mathbb{Z}) generated by the SWCs of orthogonal 𝜋, and we also determine which 𝜋 have non-trivial mod 2 Euler class.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jgth-2022-0164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2022-0164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
摘要描述了有限特殊线性群G= SL (2, F q) G=\operatorname{SL}(2,\mathbb{F}_{q})的正交表示的Stiefel-Whitney类(SWCs)。从这个计算中,我们可以回答一些关于量子力学的有趣问题。例如,我们确定了正交SWCs生成的H * * (G, Z /2) H^{*}(G,\mathbb{Z}/2\mathbb{Z})的子代数,并确定了哪些是非平凡模2欧拉类。
Stiefel–Whitney classes of representations of SL(2, 𝑞)
Abstract We describe the Stiefel–Whitney classes (SWCs) of orthogonal representations 𝜋 of the finite special linear groups G = SL ( 2 , F q ) G=\operatorname{SL}(2,\mathbb{F}_{q}) , in terms of character values of 𝜋. From this calculation, we can answer interesting questions about SWCs of 𝜋. For instance, we determine the subalgebra of H * ( G , Z / 2 Z ) H^{*}(G,\mathbb{Z}/2\mathbb{Z}) generated by the SWCs of orthogonal 𝜋, and we also determine which 𝜋 have non-trivial mod 2 Euler class.