求解Hamilton-Jacobi-Bellman方程形式最优控制问题的几种方法

Q4 Mathematics
Bhimsen Khadka, Durga Jang K.c.
{"title":"求解Hamilton-Jacobi-Bellman方程形式最优控制问题的几种方法","authors":"Bhimsen Khadka, Durga Jang K.c.","doi":"10.3126/jsce.v9i9.46290","DOIUrl":null,"url":null,"abstract":"Non-linear optimal control problem arises in many different areas, for example, engineering, medical sciences, economics, industries, etc. The solution of Hamilton-Jacobi-Bellman equation is connected with the non -linear optimal control problem. In this paper, we formulate the Hamilton-Jacobi-Bellman equation using nonlinear optimal control problem. We also discuss its solutions using Adomian decomposition method, Laplace transform-Homotopy perturbation method and variational iteration method.","PeriodicalId":36368,"journal":{"name":"AIUB Journal of Science and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Few Methods of Solving Optimal Control Problem in Hamilton-Jacobi-Bellman Equation Form\",\"authors\":\"Bhimsen Khadka, Durga Jang K.c.\",\"doi\":\"10.3126/jsce.v9i9.46290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-linear optimal control problem arises in many different areas, for example, engineering, medical sciences, economics, industries, etc. The solution of Hamilton-Jacobi-Bellman equation is connected with the non -linear optimal control problem. In this paper, we formulate the Hamilton-Jacobi-Bellman equation using nonlinear optimal control problem. We also discuss its solutions using Adomian decomposition method, Laplace transform-Homotopy perturbation method and variational iteration method.\",\"PeriodicalId\":36368,\"journal\":{\"name\":\"AIUB Journal of Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIUB Journal of Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3126/jsce.v9i9.46290\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIUB Journal of Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3126/jsce.v9i9.46290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

非线性最优控制问题出现在许多不同的领域,如工程、医学、经济、工业等。Hamilton-Jacobi-Bellman方程的解与非线性最优控制问题相联系。本文利用非线性最优控制问题,建立了Hamilton-Jacobi-Bellman方程。用Adomian分解法、拉普拉斯变换-同伦摄动法和变分迭代法讨论了其解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Few Methods of Solving Optimal Control Problem in Hamilton-Jacobi-Bellman Equation Form
Non-linear optimal control problem arises in many different areas, for example, engineering, medical sciences, economics, industries, etc. The solution of Hamilton-Jacobi-Bellman equation is connected with the non -linear optimal control problem. In this paper, we formulate the Hamilton-Jacobi-Bellman equation using nonlinear optimal control problem. We also discuss its solutions using Adomian decomposition method, Laplace transform-Homotopy perturbation method and variational iteration method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIUB Journal of Science and Engineering
AIUB Journal of Science and Engineering Mathematics-Mathematics (miscellaneous)
CiteScore
1.00
自引率
0.00%
发文量
3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信