非绝热燃烧波的Evans函数稳定性

V. Gubernov, G. Mercer, H. Sidhu, R. Weber
{"title":"非绝热燃烧波的Evans函数稳定性","authors":"V. Gubernov, G. Mercer, H. Sidhu, R. Weber","doi":"10.1098/rspa.2004.1285","DOIUrl":null,"url":null,"abstract":"In this paper we investigate the linear stability and properties of the planar travelling non–adiabatic combustion front for the cases of zero and non–zero ambient temperature. The speed of the front is estimated numerically using the shooting and relaxation methods. It is shown that for given parameter values the solution either does not exist or there are two solutions with different values of the front speed, which are referred to as ‘fast’ and ‘slow’. The Evans function approach extended by the compound–matrix method is employed to numerically solve the linear–stability problem for the travelling–wave solution. We demonstrate that the ‘slow’ branch of the solutions is unstable, whereas the ‘fast’ branch can be stable or exhibits Hopf or Bogdanov–Takens instability, depending on the parameter values.","PeriodicalId":20722,"journal":{"name":"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Evans function stability of non-adiabatic combustion waves\",\"authors\":\"V. Gubernov, G. Mercer, H. Sidhu, R. Weber\",\"doi\":\"10.1098/rspa.2004.1285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we investigate the linear stability and properties of the planar travelling non–adiabatic combustion front for the cases of zero and non–zero ambient temperature. The speed of the front is estimated numerically using the shooting and relaxation methods. It is shown that for given parameter values the solution either does not exist or there are two solutions with different values of the front speed, which are referred to as ‘fast’ and ‘slow’. The Evans function approach extended by the compound–matrix method is employed to numerically solve the linear–stability problem for the travelling–wave solution. We demonstrate that the ‘slow’ branch of the solutions is unstable, whereas the ‘fast’ branch can be stable or exhibits Hopf or Bogdanov–Takens instability, depending on the parameter values.\",\"PeriodicalId\":20722,\"journal\":{\"name\":\"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1098/rspa.2004.1285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rspa.2004.1285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

本文研究了零和非零环境温度下平面行进非绝热燃烧锋面的线性稳定性和性质。采用射击法和松弛法对锋面速度进行了数值估计。结果表明,对于给定的参数值,解要么不存在,要么有两个解具有不同的前转速值,称为“快”和“慢”。采用复合矩阵法推广的Evans函数方法,对行波解的线性稳定性问题进行了数值求解。我们证明了解的“慢”分支是不稳定的,而“快”分支可以是稳定的或表现出Hopf或Bogdanov-Takens不稳定,这取决于参数值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evans function stability of non-adiabatic combustion waves
In this paper we investigate the linear stability and properties of the planar travelling non–adiabatic combustion front for the cases of zero and non–zero ambient temperature. The speed of the front is estimated numerically using the shooting and relaxation methods. It is shown that for given parameter values the solution either does not exist or there are two solutions with different values of the front speed, which are referred to as ‘fast’ and ‘slow’. The Evans function approach extended by the compound–matrix method is employed to numerically solve the linear–stability problem for the travelling–wave solution. We demonstrate that the ‘slow’ branch of the solutions is unstable, whereas the ‘fast’ branch can be stable or exhibits Hopf or Bogdanov–Takens instability, depending on the parameter values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍: Proceedings A publishes articles across the chemical, computational, Earth, engineering, mathematical, and physical sciences. The articles published are high-quality, original, fundamental articles of interest to a wide range of scientists, and often have long citation half-lives. As well as established disciplines, we encourage emerging and interdisciplinary areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信