{"title":"可加可分合作对策不同特征函数之间的对称关系","authors":"E. Gromova, K. Savin","doi":"10.3934/jdg.2022017","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>We analyze 4 characteristic functions <inline-formula><tex-math id=\"M1\">\\begin{document}$ V^\\alpha $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M2\">\\begin{document}$ V^\\delta $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M3\">\\begin{document}$ V^\\zeta $\\end{document}</tex-math></inline-formula>, and <inline-formula><tex-math id=\"M4\">\\begin{document}$ V^\\eta $\\end{document}</tex-math></inline-formula>, and give a necessary condition for these functions to satisfy the relation <inline-formula><tex-math id=\"M5\">\\begin{document}$ V^\\alpha - V^\\delta = V^\\zeta - V^\\eta $\\end{document}</tex-math></inline-formula> for all coalitions <inline-formula><tex-math id=\"M6\">\\begin{document}$ S $\\end{document}</tex-math></inline-formula>. To do so, we define and formally analyze the class of additively separable games. It is shown that many important types of games, both static and dynamic, belong to this class.</p>","PeriodicalId":42722,"journal":{"name":"Journal of Dynamics and Games","volume":"10 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the symmetry relation between different characteristic functions for additively separable cooperative games\",\"authors\":\"E. Gromova, K. Savin\",\"doi\":\"10.3934/jdg.2022017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>We analyze 4 characteristic functions <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ V^\\\\alpha $\\\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ V^\\\\delta $\\\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ V^\\\\zeta $\\\\end{document}</tex-math></inline-formula>, and <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ V^\\\\eta $\\\\end{document}</tex-math></inline-formula>, and give a necessary condition for these functions to satisfy the relation <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ V^\\\\alpha - V^\\\\delta = V^\\\\zeta - V^\\\\eta $\\\\end{document}</tex-math></inline-formula> for all coalitions <inline-formula><tex-math id=\\\"M6\\\">\\\\begin{document}$ S $\\\\end{document}</tex-math></inline-formula>. To do so, we define and formally analyze the class of additively separable games. It is shown that many important types of games, both static and dynamic, belong to this class.</p>\",\"PeriodicalId\":42722,\"journal\":{\"name\":\"Journal of Dynamics and Games\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dynamics and Games\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/jdg.2022017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamics and Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/jdg.2022017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
摘要
We analyze 4 characteristic functions \begin{document}$ V^\alpha $\end{document}, \begin{document}$ V^\delta $\end{document}, \begin{document}$ V^\zeta $\end{document}, and \begin{document}$ V^\eta $\end{document}, and give a necessary condition for these functions to satisfy the relation \begin{document}$ V^\alpha - V^\delta = V^\zeta - V^\eta $\end{document} for all coalitions \begin{document}$ S $\end{document}. To do so, we define and formally analyze the class of additively separable games. It is shown that many important types of games, both static and dynamic, belong to this class.
On the symmetry relation between different characteristic functions for additively separable cooperative games
We analyze 4 characteristic functions \begin{document}$ V^\alpha $\end{document}, \begin{document}$ V^\delta $\end{document}, \begin{document}$ V^\zeta $\end{document}, and \begin{document}$ V^\eta $\end{document}, and give a necessary condition for these functions to satisfy the relation \begin{document}$ V^\alpha - V^\delta = V^\zeta - V^\eta $\end{document} for all coalitions \begin{document}$ S $\end{document}. To do so, we define and formally analyze the class of additively separable games. It is shown that many important types of games, both static and dynamic, belong to this class.
期刊介绍:
The Journal of Dynamics and Games (JDG) is a pure and applied mathematical journal that publishes high quality peer-review and expository papers in all research areas of expertise of its editors. The main focus of JDG is in the interface of Dynamical Systems and Game Theory.