混凝土等级、最大骨料粒径和试件粒径对岩心和浇筑试件抗压强度的影响

IF 1.5 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Salem Merabti
{"title":"混凝土等级、最大骨料粒径和试件粒径对岩心和浇筑试件抗压强度的影响","authors":"Salem Merabti","doi":"10.2478/adms-2022-0016","DOIUrl":null,"url":null,"abstract":"Abstract Core sampling is the most accurate method of evaluating the compressive strength of concrete structures. However, it is preferable to take only small cores to avoid damaging the structures. It turns out that various elements influence the strength of compressed cores. This study examines the influence of specimen size, aggregate size, concrete class, and curing method on compressive strength. Three aggregates measuring 3/8, 8/15, and 15/25 mm are used to make six sets of concrete compositions with strengths of 25 MPa and 30 MPa. Nine specimens are made, one for each variety of aggregate and concrete. Cores of 100 mm, 75 mm, and 50 mm sizes are made. These cores are extracted from concrete blocks curing in the outside air to simulate the real concrete curing environment. Cast specimens cured in water and air with diameters of 50 mm, 100 mm, and 150 mm are also made. The objective is to compare the average compressive strength of all cast or extracted specimens with that of cylindrical standard specimens of diameter 150/300 mm and the cores and cast specimens. The obtained findings showed that the compressive strength is overestimated when we compare fp100 cores and standard air-cured specimens (fc), with a conversion factor varying from 0.69 to 0.96. However, a decrease is observed in comparison with water-cured specimens. The use of fp75 cores reduced the conversion factors, which are between 0.83 and 0.87 for B25 concrete. The highest fp/fc ratios are obtained for fc50 cores, which can reach 1.24. It turns out that the size of the core and the class of concrete have a much greater influence on the fp/fc ratios.","PeriodicalId":7327,"journal":{"name":"Advances in Materials Science","volume":"38 1","pages":"21 - 31"},"PeriodicalIF":1.5000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Concrete Class, Maximum Aggregate Size and Specimen Size on the Compressive Strength of Cores and Cast Specimens\",\"authors\":\"Salem Merabti\",\"doi\":\"10.2478/adms-2022-0016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Core sampling is the most accurate method of evaluating the compressive strength of concrete structures. However, it is preferable to take only small cores to avoid damaging the structures. It turns out that various elements influence the strength of compressed cores. This study examines the influence of specimen size, aggregate size, concrete class, and curing method on compressive strength. Three aggregates measuring 3/8, 8/15, and 15/25 mm are used to make six sets of concrete compositions with strengths of 25 MPa and 30 MPa. Nine specimens are made, one for each variety of aggregate and concrete. Cores of 100 mm, 75 mm, and 50 mm sizes are made. These cores are extracted from concrete blocks curing in the outside air to simulate the real concrete curing environment. Cast specimens cured in water and air with diameters of 50 mm, 100 mm, and 150 mm are also made. The objective is to compare the average compressive strength of all cast or extracted specimens with that of cylindrical standard specimens of diameter 150/300 mm and the cores and cast specimens. The obtained findings showed that the compressive strength is overestimated when we compare fp100 cores and standard air-cured specimens (fc), with a conversion factor varying from 0.69 to 0.96. However, a decrease is observed in comparison with water-cured specimens. The use of fp75 cores reduced the conversion factors, which are between 0.83 and 0.87 for B25 concrete. The highest fp/fc ratios are obtained for fc50 cores, which can reach 1.24. It turns out that the size of the core and the class of concrete have a much greater influence on the fp/fc ratios.\",\"PeriodicalId\":7327,\"journal\":{\"name\":\"Advances in Materials Science\",\"volume\":\"38 1\",\"pages\":\"21 - 31\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/adms-2022-0016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/adms-2022-0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要岩心取样是评价混凝土结构抗压强度最准确的方法。然而,最好只取小芯,以避免损坏结构。结果表明,各种因素影响压缩岩心的强度。本研究考察了试件尺寸、骨料尺寸、混凝土等级和养护方法对抗压强度的影响。采用3/8、8/15、15/ 25mm三种骨料配制6组强度为25mpa、30mpa的混凝土组合物。制作了9个试件,每种骨料和混凝土各一个。芯线尺寸为100mm、75mm和50mm。这些核心是从外部空气中养护的混凝土块中提取出来的,以模拟真实的混凝土养护环境。还制作了直径为50mm、100mm和150mm的水和空气中固化的铸样。目的是比较所有铸造或提取试样的平均抗压强度与直径150/300 mm的圆柱形标准试样以及岩心和铸造试样的抗压强度。所得结果表明,当我们比较fp100岩芯和标准风干试件(fc)时,抗压强度被高估了,转换系数从0.69到0.96不等。然而,与水固化标本相比,观察到减少。fp75芯的使用降低了转换系数,B25混凝土的转换系数在0.83到0.87之间。fc50核的fp/fc比值最高,可达1.24。结果表明,核心尺寸和混凝土类别对fp/fc比的影响要大得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Concrete Class, Maximum Aggregate Size and Specimen Size on the Compressive Strength of Cores and Cast Specimens
Abstract Core sampling is the most accurate method of evaluating the compressive strength of concrete structures. However, it is preferable to take only small cores to avoid damaging the structures. It turns out that various elements influence the strength of compressed cores. This study examines the influence of specimen size, aggregate size, concrete class, and curing method on compressive strength. Three aggregates measuring 3/8, 8/15, and 15/25 mm are used to make six sets of concrete compositions with strengths of 25 MPa and 30 MPa. Nine specimens are made, one for each variety of aggregate and concrete. Cores of 100 mm, 75 mm, and 50 mm sizes are made. These cores are extracted from concrete blocks curing in the outside air to simulate the real concrete curing environment. Cast specimens cured in water and air with diameters of 50 mm, 100 mm, and 150 mm are also made. The objective is to compare the average compressive strength of all cast or extracted specimens with that of cylindrical standard specimens of diameter 150/300 mm and the cores and cast specimens. The obtained findings showed that the compressive strength is overestimated when we compare fp100 cores and standard air-cured specimens (fc), with a conversion factor varying from 0.69 to 0.96. However, a decrease is observed in comparison with water-cured specimens. The use of fp75 cores reduced the conversion factors, which are between 0.83 and 0.87 for B25 concrete. The highest fp/fc ratios are obtained for fc50 cores, which can reach 1.24. It turns out that the size of the core and the class of concrete have a much greater influence on the fp/fc ratios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Materials Science
Advances in Materials Science MATERIALS SCIENCE, MULTIDISCIPLINARY-
自引率
7.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信