基于时空注意力的流行病预测神经网络

Zhuanghu Lv, Jing Li, Dafeng Liu, Yue Peng, B. Shi
{"title":"基于时空注意力的流行病预测神经网络","authors":"Zhuanghu Lv, Jing Li, Dafeng Liu, Yue Peng, B. Shi","doi":"10.1145/3498851.3498972","DOIUrl":null,"url":null,"abstract":"Accurately forecasting the future trend of an epidemic plays an essential role in making effective and efficient public health policies for disease prevention and control. In reality, the local transmission of an epidemic depends not only on the cumulative number of infections at the same location, but also on the geographical spread of the disease from nearby locations. Therefore, the epidemic data usually show high nonlinearity and certain spatio-temporal patterns. Most existing methods lack the ability to simultaneously characterize the dynamic spatio-temporal patterns, thus cannot make satisfactory prediction results. In this paper, we propose a spatio-temporal attention-based neural network (STANN) to solve the epidemic prediction problem, where attention mechanisms are adopted to effectively capture the dynamic correlations of epidemic data in both spatial and temporal dimensions. The architecture of the network consists of three modules: a temporal attention module, a spatial attention module, and a temporal convolution module. Experimental results on the epidemic prediction of malaria cases in Yunnan Province, China, demonstrate that the STANN model outperforms the state-of-the-art baselines.","PeriodicalId":89230,"journal":{"name":"Proceedings. IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","volume":"67 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"STANN: Spatio-Temporal Attention-based Neural Network for Epidemic Prediction\",\"authors\":\"Zhuanghu Lv, Jing Li, Dafeng Liu, Yue Peng, B. Shi\",\"doi\":\"10.1145/3498851.3498972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurately forecasting the future trend of an epidemic plays an essential role in making effective and efficient public health policies for disease prevention and control. In reality, the local transmission of an epidemic depends not only on the cumulative number of infections at the same location, but also on the geographical spread of the disease from nearby locations. Therefore, the epidemic data usually show high nonlinearity and certain spatio-temporal patterns. Most existing methods lack the ability to simultaneously characterize the dynamic spatio-temporal patterns, thus cannot make satisfactory prediction results. In this paper, we propose a spatio-temporal attention-based neural network (STANN) to solve the epidemic prediction problem, where attention mechanisms are adopted to effectively capture the dynamic correlations of epidemic data in both spatial and temporal dimensions. The architecture of the network consists of three modules: a temporal attention module, a spatial attention module, and a temporal convolution module. Experimental results on the epidemic prediction of malaria cases in Yunnan Province, China, demonstrate that the STANN model outperforms the state-of-the-art baselines.\",\"PeriodicalId\":89230,\"journal\":{\"name\":\"Proceedings. IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3498851.3498972\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3498851.3498972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

准确预测疫情的未来趋势,对于制定有效、高效的疾病预防和控制公共卫生政策具有重要作用。实际上,流行病的局部传播不仅取决于同一地点的累计感染人数,而且还取决于该疾病从附近地点的地理传播。因此,疫情数据通常具有较高的非线性和一定的时空格局。现有的方法大多缺乏同时表征动态时空格局的能力,因而不能得到令人满意的预测结果。本文提出了一种基于时空注意力的神经网络(STANN)来解决流行病预测问题,该方法利用注意力机制在空间和时间维度上有效捕获流行病数据的动态相关性。该网络的结构由三个模块组成:时间注意模块、空间注意模块和时间卷积模块。在中国云南省疟疾病例流行预测的实验结果表明,STANN模型优于最先进的基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
STANN: Spatio-Temporal Attention-based Neural Network for Epidemic Prediction
Accurately forecasting the future trend of an epidemic plays an essential role in making effective and efficient public health policies for disease prevention and control. In reality, the local transmission of an epidemic depends not only on the cumulative number of infections at the same location, but also on the geographical spread of the disease from nearby locations. Therefore, the epidemic data usually show high nonlinearity and certain spatio-temporal patterns. Most existing methods lack the ability to simultaneously characterize the dynamic spatio-temporal patterns, thus cannot make satisfactory prediction results. In this paper, we propose a spatio-temporal attention-based neural network (STANN) to solve the epidemic prediction problem, where attention mechanisms are adopted to effectively capture the dynamic correlations of epidemic data in both spatial and temporal dimensions. The architecture of the network consists of three modules: a temporal attention module, a spatial attention module, and a temporal convolution module. Experimental results on the epidemic prediction of malaria cases in Yunnan Province, China, demonstrate that the STANN model outperforms the state-of-the-art baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信