更新因果强度的统计测量

H. Vinod
{"title":"更新因果强度的统计测量","authors":"H. Vinod","doi":"10.23756/SP.V8I1.497","DOIUrl":null,"url":null,"abstract":"We address Northcott’s (2005) criticism of Pearson’s correlation coefficient ‘r’ in measuring causal strength by replacing Pearson’s linear regressions by nonparametric nonlinear kernel regressions. Although new proof shows that Suppes’ intuitive causality condition is neither necessary nor sufficient, we resurrect Suppes’ probabilistic causality theory by using nonlinear tools. We use asymmetric generalized partial correlation coefficients from Vinod [2014] as our third criterion (denoted as Cr3) in addition to two more criteria (denoted Cr1 and Cr2). We aggregate the three criteria into one unanimity index, UI in [-100; 100], quantifying causal strengths associated with causal paths: Xi -> Xj , Xj -> Xi, and Xi Xj .","PeriodicalId":31494,"journal":{"name":"Science Philosophy","volume":"41 1","pages":"3-20"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Updating Statistical Measures of Causal Strength\",\"authors\":\"H. Vinod\",\"doi\":\"10.23756/SP.V8I1.497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address Northcott’s (2005) criticism of Pearson’s correlation coefficient ‘r’ in measuring causal strength by replacing Pearson’s linear regressions by nonparametric nonlinear kernel regressions. Although new proof shows that Suppes’ intuitive causality condition is neither necessary nor sufficient, we resurrect Suppes’ probabilistic causality theory by using nonlinear tools. We use asymmetric generalized partial correlation coefficients from Vinod [2014] as our third criterion (denoted as Cr3) in addition to two more criteria (denoted Cr1 and Cr2). We aggregate the three criteria into one unanimity index, UI in [-100; 100], quantifying causal strengths associated with causal paths: Xi -> Xj , Xj -> Xi, and Xi Xj .\",\"PeriodicalId\":31494,\"journal\":{\"name\":\"Science Philosophy\",\"volume\":\"41 1\",\"pages\":\"3-20\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Philosophy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23756/SP.V8I1.497\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Philosophy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23756/SP.V8I1.497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们通过用非参数非线性核回归代替Pearson的线性回归来解决Northcott(2005)在测量因果强度时对Pearson的相关系数“r”的批评。虽然新的证明表明Suppes的直观因果条件既非充分也非必要,但我们利用非线性工具复活了Suppes的概率因果理论。我们使用来自Vinod[2014]的非对称广义偏相关系数作为第三个标准(记为Cr3),另外还有两个标准(记为Cr1和Cr2)。我们将三个标准汇总成一个一致性指数,UI在[-100;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Updating Statistical Measures of Causal Strength
We address Northcott’s (2005) criticism of Pearson’s correlation coefficient ‘r’ in measuring causal strength by replacing Pearson’s linear regressions by nonparametric nonlinear kernel regressions. Although new proof shows that Suppes’ intuitive causality condition is neither necessary nor sufficient, we resurrect Suppes’ probabilistic causality theory by using nonlinear tools. We use asymmetric generalized partial correlation coefficients from Vinod [2014] as our third criterion (denoted as Cr3) in addition to two more criteria (denoted Cr1 and Cr2). We aggregate the three criteria into one unanimity index, UI in [-100; 100], quantifying causal strengths associated with causal paths: Xi -> Xj , Xj -> Xi, and Xi Xj .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信