Emmanouil Karantoumanis, Vasileios Balafas, M. Louta, N. Ploskas
{"title":"植物病害检测图像预处理技术的计算比较","authors":"Emmanouil Karantoumanis, Vasileios Balafas, M. Louta, N. Ploskas","doi":"10.1109/SEEDA-CECNSM57760.2022.9932972","DOIUrl":null,"url":null,"abstract":"There is an abundance of deep neural network models for plant disease detection. Prior to applying these models, image preprocessing techniques are applied in order to improve the detection results. However, there is a lack of computational comparisons on the application of different image preprocessing techniques before applying object detection algorithms for plant disease detection. This paper aims to fill this gap by presenting a computational comparison of seven different image preprocessing techniques (auto-orientation, object isolation, resizing, grayscale conversion, static crop, contrast adjustment, tiling) applied prior to the execution of two state-of-the-art object detection algorithms, one single-stage detector, YOLOV5, and one two-stage detector, Faster-RCNN. We investigate whether or not these preprocessing techniques improve the accuracy, training time, and inference time, of plant disease detection. Apart from comparing these techniques solely, we also perform combinations of the preprocessing techniques. The PlantDoc dataset was used for this experimental study. Computational results show that the best method improves the mean average precision by 9% and 3% for YOLOv5 and Faster-RCNN, respectively. Finally, the combination of all seven preprocessing techniques yields an improvement of about 13% in the mean average precision of both object detectors.","PeriodicalId":68279,"journal":{"name":"计算机工程与设计","volume":"54 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational comparison of image preprocessing techniques for plant diseases detection\",\"authors\":\"Emmanouil Karantoumanis, Vasileios Balafas, M. Louta, N. Ploskas\",\"doi\":\"10.1109/SEEDA-CECNSM57760.2022.9932972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is an abundance of deep neural network models for plant disease detection. Prior to applying these models, image preprocessing techniques are applied in order to improve the detection results. However, there is a lack of computational comparisons on the application of different image preprocessing techniques before applying object detection algorithms for plant disease detection. This paper aims to fill this gap by presenting a computational comparison of seven different image preprocessing techniques (auto-orientation, object isolation, resizing, grayscale conversion, static crop, contrast adjustment, tiling) applied prior to the execution of two state-of-the-art object detection algorithms, one single-stage detector, YOLOV5, and one two-stage detector, Faster-RCNN. We investigate whether or not these preprocessing techniques improve the accuracy, training time, and inference time, of plant disease detection. Apart from comparing these techniques solely, we also perform combinations of the preprocessing techniques. The PlantDoc dataset was used for this experimental study. Computational results show that the best method improves the mean average precision by 9% and 3% for YOLOv5 and Faster-RCNN, respectively. Finally, the combination of all seven preprocessing techniques yields an improvement of about 13% in the mean average precision of both object detectors.\",\"PeriodicalId\":68279,\"journal\":{\"name\":\"计算机工程与设计\",\"volume\":\"54 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"计算机工程与设计\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1109/SEEDA-CECNSM57760.2022.9932972\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"计算机工程与设计","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/SEEDA-CECNSM57760.2022.9932972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Computational comparison of image preprocessing techniques for plant diseases detection
There is an abundance of deep neural network models for plant disease detection. Prior to applying these models, image preprocessing techniques are applied in order to improve the detection results. However, there is a lack of computational comparisons on the application of different image preprocessing techniques before applying object detection algorithms for plant disease detection. This paper aims to fill this gap by presenting a computational comparison of seven different image preprocessing techniques (auto-orientation, object isolation, resizing, grayscale conversion, static crop, contrast adjustment, tiling) applied prior to the execution of two state-of-the-art object detection algorithms, one single-stage detector, YOLOV5, and one two-stage detector, Faster-RCNN. We investigate whether or not these preprocessing techniques improve the accuracy, training time, and inference time, of plant disease detection. Apart from comparing these techniques solely, we also perform combinations of the preprocessing techniques. The PlantDoc dataset was used for this experimental study. Computational results show that the best method improves the mean average precision by 9% and 3% for YOLOv5 and Faster-RCNN, respectively. Finally, the combination of all seven preprocessing techniques yields an improvement of about 13% in the mean average precision of both object detectors.
期刊介绍:
Computer Engineering and Design is supervised by China Aerospace Science and Industry Corporation and sponsored by the 706th Institute of the Second Academy of China Aerospace Science and Industry Corporation. It was founded in 1980. The purpose of the journal is to disseminate new technologies and promote academic exchanges. Since its inception, it has adhered to the principle of combining depth and breadth, theory and application, and focused on reporting cutting-edge and hot computer technologies. The journal accepts academic papers with innovative and independent academic insights, including papers on fund projects, award-winning research papers, outstanding papers at academic conferences, doctoral and master's theses, etc.