单宁铁络合物(TA-FeIII/PES)超滤膜处理BTEX废水的制备及性能评价

IF 1 4区 环境科学与生态学 Q4 WATER RESOURCES
Takalani Makhani, Olawumi O Sadare, Stephan Wagenaar, Kapil Moothi, Richard M Moutloali, Michael O Daramola
{"title":"单宁铁络合物(TA-FeIII/PES)超滤膜处理BTEX废水的制备及性能评价","authors":"Takalani Makhani, Olawumi O Sadare, Stephan Wagenaar, Kapil Moothi, Richard M Moutloali, Michael O Daramola","doi":"10.17159/wsa/2022.v48.i4.3955","DOIUrl":null,"url":null,"abstract":"Oil exploration generates produced water that is characterized as hazardous and toxic waste. Produced water contains a mixture of various pollutants, including monoaromatic hydrocarbons BTEX (benzene, toluene, ethylbenzene, and xylene), compounds that are carcinogenic even in small concentrations.  In this study, tannin iron complex (TA-FeIII), blended into polyethersulfone (PES) membrane was evaluated for the treatment of BTEX-containing wastewater. The membranes were fabricated using the non-solvent induced phase separation (NIPS) method and loading of the TA-FeIII complex on the membranes varied from 0–0.9 wt%. The fabricated membranes were characterized using various techniques such as scanning electron microscopy (SEM), water contact angle (WCA), Fourier transform infrared (FTIR) spectroscopy, and atomic force microscopy (AFM) to check the surface morphology, hydrophilicity, surface functionality and surface roughness of the fabricated membranes, respectively. The TA-FeIII modified membranes showed increased pure water flux from 100 (PES 0) to ∼150 (PES 0.9) L/(m2‧h) at 100 kPa. The performance of the fabricated membranes was tested using 70 mg/L synthetic BTEX solution. Overall BTEX rejection > 70% was achieved at increasing TA-FeIII loadings compared to BTEX rejection < 65% for the pure PES membrane. Rejection of the BTEX compounds was mainly through the size exclusion mechanism. These modified TA-FeIII/PES UF membranes proved to be effective in the treatment of BTEX-containing water, and also have the potential to be applied in oily wastewater treatment. ","PeriodicalId":23623,"journal":{"name":"Water SA","volume":"66 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication and performance evaluation of tannin iron complex (TA-FeIII/PES) UF membrane in treatment of BTEX wastewater\",\"authors\":\"Takalani Makhani, Olawumi O Sadare, Stephan Wagenaar, Kapil Moothi, Richard M Moutloali, Michael O Daramola\",\"doi\":\"10.17159/wsa/2022.v48.i4.3955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Oil exploration generates produced water that is characterized as hazardous and toxic waste. Produced water contains a mixture of various pollutants, including monoaromatic hydrocarbons BTEX (benzene, toluene, ethylbenzene, and xylene), compounds that are carcinogenic even in small concentrations.  In this study, tannin iron complex (TA-FeIII), blended into polyethersulfone (PES) membrane was evaluated for the treatment of BTEX-containing wastewater. The membranes were fabricated using the non-solvent induced phase separation (NIPS) method and loading of the TA-FeIII complex on the membranes varied from 0–0.9 wt%. The fabricated membranes were characterized using various techniques such as scanning electron microscopy (SEM), water contact angle (WCA), Fourier transform infrared (FTIR) spectroscopy, and atomic force microscopy (AFM) to check the surface morphology, hydrophilicity, surface functionality and surface roughness of the fabricated membranes, respectively. The TA-FeIII modified membranes showed increased pure water flux from 100 (PES 0) to ∼150 (PES 0.9) L/(m2‧h) at 100 kPa. The performance of the fabricated membranes was tested using 70 mg/L synthetic BTEX solution. Overall BTEX rejection > 70% was achieved at increasing TA-FeIII loadings compared to BTEX rejection < 65% for the pure PES membrane. Rejection of the BTEX compounds was mainly through the size exclusion mechanism. These modified TA-FeIII/PES UF membranes proved to be effective in the treatment of BTEX-containing water, and also have the potential to be applied in oily wastewater treatment. \",\"PeriodicalId\":23623,\"journal\":{\"name\":\"Water SA\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water SA\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.17159/wsa/2022.v48.i4.3955\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water SA","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.17159/wsa/2022.v48.i4.3955","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

摘要

石油勘探产生的采出水被认为是危险和有毒的废物。采出水中含有各种污染物的混合物,包括单芳香烃BTEX(苯、甲苯、乙苯和二甲苯),这些化合物即使浓度很低也会致癌。研究了单宁铁配合物(TA-FeIII)与聚醚砜(PES)膜共混处理含btex废水的效果。该膜采用非溶剂诱导相分离(NIPS)法制备,TA-FeIII配合物在膜上的负载在0-0.9 wt%之间变化。利用扫描电子显微镜(SEM)、水接触角(WCA)、傅里叶变换红外光谱(FTIR)和原子力显微镜(AFM)等技术对制备的膜进行表征,分别检测制备膜的表面形貌、亲水性、表面官能性和表面粗糙度。在100 kPa下,TA-FeIII改性膜的纯水通量从100 (PES 0)增加到~ 150 (PES 0.9) L/(m2·h)。用70mg /L合成BTEX溶液对制备的膜进行性能测试。在增加TA-FeIII负载时,总体BTEX截留率> 70%,而纯PES膜的BTEX截留率< 65%。BTEX化合物的排斥反应主要是通过粒径排斥机制进行的。经实验证明,这些改性TA-FeIII/PES超滤膜在处理含btex的水中是有效的,并且在含油废水处理中也具有应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fabrication and performance evaluation of tannin iron complex (TA-FeIII/PES) UF membrane in treatment of BTEX wastewater
Oil exploration generates produced water that is characterized as hazardous and toxic waste. Produced water contains a mixture of various pollutants, including monoaromatic hydrocarbons BTEX (benzene, toluene, ethylbenzene, and xylene), compounds that are carcinogenic even in small concentrations.  In this study, tannin iron complex (TA-FeIII), blended into polyethersulfone (PES) membrane was evaluated for the treatment of BTEX-containing wastewater. The membranes were fabricated using the non-solvent induced phase separation (NIPS) method and loading of the TA-FeIII complex on the membranes varied from 0–0.9 wt%. The fabricated membranes were characterized using various techniques such as scanning electron microscopy (SEM), water contact angle (WCA), Fourier transform infrared (FTIR) spectroscopy, and atomic force microscopy (AFM) to check the surface morphology, hydrophilicity, surface functionality and surface roughness of the fabricated membranes, respectively. The TA-FeIII modified membranes showed increased pure water flux from 100 (PES 0) to ∼150 (PES 0.9) L/(m2‧h) at 100 kPa. The performance of the fabricated membranes was tested using 70 mg/L synthetic BTEX solution. Overall BTEX rejection > 70% was achieved at increasing TA-FeIII loadings compared to BTEX rejection < 65% for the pure PES membrane. Rejection of the BTEX compounds was mainly through the size exclusion mechanism. These modified TA-FeIII/PES UF membranes proved to be effective in the treatment of BTEX-containing water, and also have the potential to be applied in oily wastewater treatment. 
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water SA
Water SA 环境科学-水资源
CiteScore
2.80
自引率
6.70%
发文量
46
审稿时长
18-36 weeks
期刊介绍: WaterSA publishes refereed, original work in all branches of water science, technology and engineering. This includes water resources development; the hydrological cycle; surface hydrology; geohydrology and hydrometeorology; limnology; salinisation; treatment and management of municipal and industrial water and wastewater; treatment and disposal of sewage sludge; environmental pollution control; water quality and treatment; aquaculture in terms of its impact on the water resource; agricultural water science; etc. Water SA is the WRC’s accredited scientific journal which contains original research articles and review articles on all aspects of water science, technology, engineering and policy. Water SA has been in publication since 1975 and includes articles from both local and international authors. The journal is issued quarterly (4 editions per year).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信