利用迁移学习进行页岩气产量预测

IF 2.6 Q3 ENERGY & FUELS
Omar S. Alolayan , Samuel J. Raymond , Justin B. Montgomery , John R. Williams
{"title":"利用迁移学习进行页岩气产量预测","authors":"Omar S. Alolayan ,&nbsp;Samuel J. Raymond ,&nbsp;Justin B. Montgomery ,&nbsp;John R. Williams","doi":"10.1016/j.upstre.2022.100072","DOIUrl":null,"url":null,"abstract":"<div><h3>Abstract</h3><p>Deep neural networks<span> can generate more accurate shale gas<span> production forecasts in counties with a limited number of sample wells by utilizing transfer learning. This paper provides a way of transferring the knowledge gained from other deep neural network models trained on adjacent counties into the county of interest. The paper uses data from more than 6000 shale gas wells across 17 counties from Texas Barnett and Pennsylvania Marcellus shale formations to test the capabilities of transfer learning. The results reduce the forecasting error between 11% and 47% compared to the widely used Arps decline curve model.</span></span></p></div>","PeriodicalId":101264,"journal":{"name":"Upstream Oil and Gas Technology","volume":"9 ","pages":"Article 100072"},"PeriodicalIF":2.6000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Towards better shale gas production forecasting using transfer learning\",\"authors\":\"Omar S. Alolayan ,&nbsp;Samuel J. Raymond ,&nbsp;Justin B. Montgomery ,&nbsp;John R. Williams\",\"doi\":\"10.1016/j.upstre.2022.100072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Abstract</h3><p>Deep neural networks<span> can generate more accurate shale gas<span> production forecasts in counties with a limited number of sample wells by utilizing transfer learning. This paper provides a way of transferring the knowledge gained from other deep neural network models trained on adjacent counties into the county of interest. The paper uses data from more than 6000 shale gas wells across 17 counties from Texas Barnett and Pennsylvania Marcellus shale formations to test the capabilities of transfer learning. The results reduce the forecasting error between 11% and 47% compared to the widely used Arps decline curve model.</span></span></p></div>\",\"PeriodicalId\":101264,\"journal\":{\"name\":\"Upstream Oil and Gas Technology\",\"volume\":\"9 \",\"pages\":\"Article 100072\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Upstream Oil and Gas Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266626042200010X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Upstream Oil and Gas Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266626042200010X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 10

摘要

摘要深度神经网络利用迁移学习技术,可以在样本井数量有限的县域条件下,获得更准确的页岩气产量预测结果。本文提供了一种将从相邻县训练的其他深度神经网络模型中获得的知识转移到感兴趣县的方法。本文使用了来自德克萨斯州Barnett和宾夕法尼亚州Marcellus页岩地层17个县的6000多口页岩气井的数据来测试迁移学习的能力。与广泛使用的Arps下降曲线模型相比,该模型的预测误差降低了11% ~ 47%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards better shale gas production forecasting using transfer learning

Abstract

Deep neural networks can generate more accurate shale gas production forecasts in counties with a limited number of sample wells by utilizing transfer learning. This paper provides a way of transferring the knowledge gained from other deep neural network models trained on adjacent counties into the county of interest. The paper uses data from more than 6000 shale gas wells across 17 counties from Texas Barnett and Pennsylvania Marcellus shale formations to test the capabilities of transfer learning. The results reduce the forecasting error between 11% and 47% compared to the widely used Arps decline curve model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信