介绍使用互联网搜索数据进行数据清洗

Matthew Greenwood‐Nimmo, Kalvinder K. Shields
{"title":"介绍使用互联网搜索数据进行数据清洗","authors":"Matthew Greenwood‐Nimmo, Kalvinder K. Shields","doi":"10.1111/1467-8462.12235","DOIUrl":null,"url":null,"abstract":"This article considers the issue of data cleaning. We use state-level data on internet search activity in the United States to illustrate several common data cleaning tasks, including frequency conversion and data scaling as well as methods for handling sampling uncertainty and accommodating structural breaks and outliers. We emphasise that data cleaning relies on informed judgement and so it is important to maintain transparency through careful documentation of data cleaning procedures.","PeriodicalId":11754,"journal":{"name":"ERN: Other Macroeconomics: Aggregative Models (Topic)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Introduction to Data Cleaning Using Internet Search Data\",\"authors\":\"Matthew Greenwood‐Nimmo, Kalvinder K. Shields\",\"doi\":\"10.1111/1467-8462.12235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article considers the issue of data cleaning. We use state-level data on internet search activity in the United States to illustrate several common data cleaning tasks, including frequency conversion and data scaling as well as methods for handling sampling uncertainty and accommodating structural breaks and outliers. We emphasise that data cleaning relies on informed judgement and so it is important to maintain transparency through careful documentation of data cleaning procedures.\",\"PeriodicalId\":11754,\"journal\":{\"name\":\"ERN: Other Macroeconomics: Aggregative Models (Topic)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Macroeconomics: Aggregative Models (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/1467-8462.12235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Macroeconomics: Aggregative Models (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/1467-8462.12235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文考虑数据清理问题。我们使用美国互联网搜索活动的州级数据来说明几种常见的数据清理任务,包括频率转换和数据缩放以及处理采样不确定性和适应结构断裂和异常值的方法。我们强调,数据清理依赖于知情判断,因此通过仔细记录数据清理程序来保持透明度非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Introduction to Data Cleaning Using Internet Search Data
This article considers the issue of data cleaning. We use state-level data on internet search activity in the United States to illustrate several common data cleaning tasks, including frequency conversion and data scaling as well as methods for handling sampling uncertainty and accommodating structural breaks and outliers. We emphasise that data cleaning relies on informed judgement and so it is important to maintain transparency through careful documentation of data cleaning procedures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信