Teppei Kawanabe, A. Kawabata, T. Murakami, M. Nihei, Y. Awano
{"title":"碳纳米管通硅孔(CNT-TSV)和热界面材料(CNT-TIM)在LSI三维封装中高散热技术的数值模拟","authors":"Teppei Kawanabe, A. Kawabata, T. Murakami, M. Nihei, Y. Awano","doi":"10.1109/IITC.2013.6615581","DOIUrl":null,"url":null,"abstract":"We report numerical simulations of heat dissipation properties of nano-carbon through silicon via (TSV), thermal interface material (TIM), and chip package towards a high heat dissipation LSI 3-D packaging. By using vertically aligned multi-walled CNTs (MWNTs) as both TSV and TIM materials and graphite as chip package, a boundary temperature just under a heat source decreased 40.8K in total, comparing to that using conventional materials. This result suggests superior heat dissipation properties of nano-carbon 3-D packaging.","PeriodicalId":6377,"journal":{"name":"2013 IEEE International Interconnect Technology Conference - IITC","volume":"11 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Numerical simulations of high heat dissipation technology in LSI 3-D packaging using carbon nanotube through silicon via (CNT-TSV) and thermal interface material (CNT-TIM)\",\"authors\":\"Teppei Kawanabe, A. Kawabata, T. Murakami, M. Nihei, Y. Awano\",\"doi\":\"10.1109/IITC.2013.6615581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report numerical simulations of heat dissipation properties of nano-carbon through silicon via (TSV), thermal interface material (TIM), and chip package towards a high heat dissipation LSI 3-D packaging. By using vertically aligned multi-walled CNTs (MWNTs) as both TSV and TIM materials and graphite as chip package, a boundary temperature just under a heat source decreased 40.8K in total, comparing to that using conventional materials. This result suggests superior heat dissipation properties of nano-carbon 3-D packaging.\",\"PeriodicalId\":6377,\"journal\":{\"name\":\"2013 IEEE International Interconnect Technology Conference - IITC\",\"volume\":\"11 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Interconnect Technology Conference - IITC\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IITC.2013.6615581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Interconnect Technology Conference - IITC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IITC.2013.6615581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical simulations of high heat dissipation technology in LSI 3-D packaging using carbon nanotube through silicon via (CNT-TSV) and thermal interface material (CNT-TIM)
We report numerical simulations of heat dissipation properties of nano-carbon through silicon via (TSV), thermal interface material (TIM), and chip package towards a high heat dissipation LSI 3-D packaging. By using vertically aligned multi-walled CNTs (MWNTs) as both TSV and TIM materials and graphite as chip package, a boundary temperature just under a heat source decreased 40.8K in total, comparing to that using conventional materials. This result suggests superior heat dissipation properties of nano-carbon 3-D packaging.