{"title":"压电驱动定位台的耦合建模与自适应控制","authors":"Liang Li, Shi-Xin Zhang, Sheng-Jun Wen","doi":"10.1155/2022/2534439","DOIUrl":null,"url":null,"abstract":"In this paper, a nonlinear coupling model with hysteresis, dynamics, and creep is proposed to describe accurately the complex characteristics of piezoelectric-actuated positioning stage, where a classic Hammerstein model in series with a fractional-order model is given. The fractional-order model is presented to express the nonlinear creep characteristics. Firstly, the Hammerstein structure model is composed of two blocks, where the former block is the classical PI model to describe the static hysteresis effects, and the latter block is the second-order discrete transfer function model to characterize the dynamic characteristics. In addition, the parameters of the coupling model are identified. Secondly, based on the built model, the inverse of fractional-order model and the inverse of PI model are implemented as the feedforward compensations, and an adaptive control is designed to adjust the tracking performance of the whole system. Finally, the effectiveness of the proposed coupling model and controllers are verified by the piezoelectric-actuated positioning experiment stage. Experimental results show that the established coupling model can accurately characterize the hysteresis, dynamics, and creep properties of the stage. Also, the results show that the tracking error is less than 0.8% at low frequency and mixed frequency.","PeriodicalId":45541,"journal":{"name":"Modelling and Simulation in Engineering","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Coupling Modeling and Adaptive Control for Piezoelectric-Actuated Positioning Stage\",\"authors\":\"Liang Li, Shi-Xin Zhang, Sheng-Jun Wen\",\"doi\":\"10.1155/2022/2534439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a nonlinear coupling model with hysteresis, dynamics, and creep is proposed to describe accurately the complex characteristics of piezoelectric-actuated positioning stage, where a classic Hammerstein model in series with a fractional-order model is given. The fractional-order model is presented to express the nonlinear creep characteristics. Firstly, the Hammerstein structure model is composed of two blocks, where the former block is the classical PI model to describe the static hysteresis effects, and the latter block is the second-order discrete transfer function model to characterize the dynamic characteristics. In addition, the parameters of the coupling model are identified. Secondly, based on the built model, the inverse of fractional-order model and the inverse of PI model are implemented as the feedforward compensations, and an adaptive control is designed to adjust the tracking performance of the whole system. Finally, the effectiveness of the proposed coupling model and controllers are verified by the piezoelectric-actuated positioning experiment stage. Experimental results show that the established coupling model can accurately characterize the hysteresis, dynamics, and creep properties of the stage. Also, the results show that the tracking error is less than 0.8% at low frequency and mixed frequency.\",\"PeriodicalId\":45541,\"journal\":{\"name\":\"Modelling and Simulation in Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modelling and Simulation in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/2534439\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/2534439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Coupling Modeling and Adaptive Control for Piezoelectric-Actuated Positioning Stage
In this paper, a nonlinear coupling model with hysteresis, dynamics, and creep is proposed to describe accurately the complex characteristics of piezoelectric-actuated positioning stage, where a classic Hammerstein model in series with a fractional-order model is given. The fractional-order model is presented to express the nonlinear creep characteristics. Firstly, the Hammerstein structure model is composed of two blocks, where the former block is the classical PI model to describe the static hysteresis effects, and the latter block is the second-order discrete transfer function model to characterize the dynamic characteristics. In addition, the parameters of the coupling model are identified. Secondly, based on the built model, the inverse of fractional-order model and the inverse of PI model are implemented as the feedforward compensations, and an adaptive control is designed to adjust the tracking performance of the whole system. Finally, the effectiveness of the proposed coupling model and controllers are verified by the piezoelectric-actuated positioning experiment stage. Experimental results show that the established coupling model can accurately characterize the hysteresis, dynamics, and creep properties of the stage. Also, the results show that the tracking error is less than 0.8% at low frequency and mixed frequency.
期刊介绍:
Modelling and Simulation in Engineering aims at providing a forum for the discussion of formalisms, methodologies and simulation tools that are intended to support the new, broader interpretation of Engineering. Competitive pressures of Global Economy have had a profound effect on the manufacturing in Europe, Japan and the USA with much of the production being outsourced. In this context the traditional interpretation of engineering profession linked to the actual manufacturing needs to be broadened to include the integration of outsourced components and the consideration of logistic, economical and human factors in the design of engineering products and services.