基于快速傅里叶变换和自适应神经模糊推理系统的脑电信号分类

S. Suwanto, M. H. Bisri, D. C. R. Novitasari, Ahmad Hanif Asyhar
{"title":"基于快速傅里叶变换和自适应神经模糊推理系统的脑电信号分类","authors":"S. Suwanto, M. H. Bisri, D. C. R. Novitasari, Ahmad Hanif Asyhar","doi":"10.15642/MANTIK.2019.5.1.35-44","DOIUrl":null,"url":null,"abstract":"Epilepsy is a disease that attacks the brain and results in seizures due to neurological disorders. The electrical activity of the brain recorded by the EEG signal test, because EEG test can be used to diagnose brain and mental diseases such as epilepsy. This study aims to identify whether a person has epilepsy or not along with the result of accurate, sensitivity, and precision rate using Fast Fourier Transform (FFT) and Adaptive Neuro-Fuzzy Inference System (ANFIS) method. The FFT is used to transform EEG signals from time-based into frequency-based and continued with feature extraction to take characteristics from each filtering signal using the median, mean, and standard deviations of each EEG signal. The results of the feature extraction used for input on the category process based on characteristics data (classification) using ANFIS. EEG signal data is obtained from epilepsy center online database of Bonn University, German. The results of the EEG signal classification system using ANFIS with two classes (Normal-Epilepsy) states accuracy, sensitivity, and precision of 100%. The classification systems with three class division (Normal-Not Seizure Epilepsy-Epilepsy) resulted in an accuracy of 89.33% sensitivity of 89.37% and precision of 89.33%.","PeriodicalId":32704,"journal":{"name":"Mantik Jurnal Matematika","volume":"2014 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Classification of EEG Signals using Fast Fourier Transform (FFT) and Adaptive Neuro Fuzzy Inference System (ANFIS)\",\"authors\":\"S. Suwanto, M. H. Bisri, D. C. R. Novitasari, Ahmad Hanif Asyhar\",\"doi\":\"10.15642/MANTIK.2019.5.1.35-44\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Epilepsy is a disease that attacks the brain and results in seizures due to neurological disorders. The electrical activity of the brain recorded by the EEG signal test, because EEG test can be used to diagnose brain and mental diseases such as epilepsy. This study aims to identify whether a person has epilepsy or not along with the result of accurate, sensitivity, and precision rate using Fast Fourier Transform (FFT) and Adaptive Neuro-Fuzzy Inference System (ANFIS) method. The FFT is used to transform EEG signals from time-based into frequency-based and continued with feature extraction to take characteristics from each filtering signal using the median, mean, and standard deviations of each EEG signal. The results of the feature extraction used for input on the category process based on characteristics data (classification) using ANFIS. EEG signal data is obtained from epilepsy center online database of Bonn University, German. The results of the EEG signal classification system using ANFIS with two classes (Normal-Epilepsy) states accuracy, sensitivity, and precision of 100%. The classification systems with three class division (Normal-Not Seizure Epilepsy-Epilepsy) resulted in an accuracy of 89.33% sensitivity of 89.37% and precision of 89.33%.\",\"PeriodicalId\":32704,\"journal\":{\"name\":\"Mantik Jurnal Matematika\",\"volume\":\"2014 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mantik Jurnal Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15642/MANTIK.2019.5.1.35-44\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mantik Jurnal Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15642/MANTIK.2019.5.1.35-44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

癫痫是一种攻击大脑的疾病,由于神经系统紊乱而导致癫痫发作。通过脑电图信号测试记录大脑的电活动,因为脑电图测试可以用来诊断大脑和精神疾病,如癫痫。本研究旨在利用快速傅里叶变换(FFT)和自适应神经模糊推理系统(ANFIS)的方法,通过准确度、灵敏度和准确率来判断患者是否患有癫痫。利用FFT将基于时间的脑电信号转换为基于频率的脑电信号,并继续进行特征提取,利用每个脑电信号的中值、均值和标准差从每个滤波信号中提取特征。使用ANFIS将特征提取的结果用于输入基于特征数据的分类过程(分类)。EEG信号数据来源于德国波恩大学癫痫中心在线数据库。结果表明,采用ANFIS对正常-癫痫两类EEG信号进行分类的准确率、灵敏度和精密度均为100%。正常-非发作性癫痫-癫痫3类分类系统的准确率为89.33%,灵敏度为89.37%,精密度为89.33%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of EEG Signals using Fast Fourier Transform (FFT) and Adaptive Neuro Fuzzy Inference System (ANFIS)
Epilepsy is a disease that attacks the brain and results in seizures due to neurological disorders. The electrical activity of the brain recorded by the EEG signal test, because EEG test can be used to diagnose brain and mental diseases such as epilepsy. This study aims to identify whether a person has epilepsy or not along with the result of accurate, sensitivity, and precision rate using Fast Fourier Transform (FFT) and Adaptive Neuro-Fuzzy Inference System (ANFIS) method. The FFT is used to transform EEG signals from time-based into frequency-based and continued with feature extraction to take characteristics from each filtering signal using the median, mean, and standard deviations of each EEG signal. The results of the feature extraction used for input on the category process based on characteristics data (classification) using ANFIS. EEG signal data is obtained from epilepsy center online database of Bonn University, German. The results of the EEG signal classification system using ANFIS with two classes (Normal-Epilepsy) states accuracy, sensitivity, and precision of 100%. The classification systems with three class division (Normal-Not Seizure Epilepsy-Epilepsy) resulted in an accuracy of 89.33% sensitivity of 89.37% and precision of 89.33%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
10
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信