{"title":"具有零维余数的局部紧化空间的紧化","authors":"P.C. Baayen, J. van Mill","doi":"10.1016/0016-660X(78)90057-0","DOIUrl":null,"url":null,"abstract":"<div><p>For a locally compact space <em>X</em> we give a necessary and sufficient condition for every compactification <em>aX</em> of <em>X</em> with zero-dimensional remainder to be regular Wallman. As an application it follows that the Freudenthal compactification of a locally compact metrizable space is regular Wallman.</p></div>","PeriodicalId":100574,"journal":{"name":"General Topology and its Applications","volume":"9 2","pages":"Pages 125-129"},"PeriodicalIF":0.0000,"publicationDate":"1978-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0016-660X(78)90057-0","citationCount":"4","resultStr":"{\"title\":\"Compactifications of locally compact spaces with zero-dimensional remainder\",\"authors\":\"P.C. Baayen, J. van Mill\",\"doi\":\"10.1016/0016-660X(78)90057-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For a locally compact space <em>X</em> we give a necessary and sufficient condition for every compactification <em>aX</em> of <em>X</em> with zero-dimensional remainder to be regular Wallman. As an application it follows that the Freudenthal compactification of a locally compact metrizable space is regular Wallman.</p></div>\",\"PeriodicalId\":100574,\"journal\":{\"name\":\"General Topology and its Applications\",\"volume\":\"9 2\",\"pages\":\"Pages 125-129\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1978-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0016-660X(78)90057-0\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"General Topology and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0016660X78900570\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Topology and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0016660X78900570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Compactifications of locally compact spaces with zero-dimensional remainder
For a locally compact space X we give a necessary and sufficient condition for every compactification aX of X with zero-dimensional remainder to be regular Wallman. As an application it follows that the Freudenthal compactification of a locally compact metrizable space is regular Wallman.