{"title":"培育富含褪黑激素的转基因水稻以应对全球变暖可能对水稻生产造成的不利影响","authors":"K. Back, D. Tan, R. Reiter","doi":"10.32794/mr112500108","DOIUrl":null,"url":null,"abstract":"Global warming is predicted to reduce the yield of rice, which feeds more than half of the world’s population. A rise in temperature will inevitably hamper rice production by causing drought and flooding. Melatonin has the capacity to ameliorate such adverse effects. Here, we propose multiple genetic means of producing melatonin-enriched, high-yield rice variants to adapt upcoming global warming. ","PeriodicalId":18604,"journal":{"name":"Melatonin Research","volume":"340 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Strategies to generate melatonin-enriched transgenic rice to respond to the adverse effects on rice production potentially caused by global warming\",\"authors\":\"K. Back, D. Tan, R. Reiter\",\"doi\":\"10.32794/mr112500108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Global warming is predicted to reduce the yield of rice, which feeds more than half of the world’s population. A rise in temperature will inevitably hamper rice production by causing drought and flooding. Melatonin has the capacity to ameliorate such adverse effects. Here, we propose multiple genetic means of producing melatonin-enriched, high-yield rice variants to adapt upcoming global warming. \",\"PeriodicalId\":18604,\"journal\":{\"name\":\"Melatonin Research\",\"volume\":\"340 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Melatonin Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32794/mr112500108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Melatonin Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32794/mr112500108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Strategies to generate melatonin-enriched transgenic rice to respond to the adverse effects on rice production potentially caused by global warming
Global warming is predicted to reduce the yield of rice, which feeds more than half of the world’s population. A rise in temperature will inevitably hamper rice production by causing drought and flooding. Melatonin has the capacity to ameliorate such adverse effects. Here, we propose multiple genetic means of producing melatonin-enriched, high-yield rice variants to adapt upcoming global warming.