{"title":"流变学和复杂流体的流动:基础和实验方面","authors":"A. Maazouz","doi":"10.2139/ssrn.3639136","DOIUrl":null,"url":null,"abstract":"The study of the rheological behavior of complex fluids in relation to their molecular structure is a primary tool to predict their flow behavior. Such study is often conducted under high shear gradients equivalent to those present in the processes. The ultimate goal of this paper is to introduce the fundamental aspects of shear rheology. The experimental aspects include showing how to establish flow curves (stress versus shear gradients or viscosity versus shear gradients) necessary for any numerical simulation of the flows.","PeriodicalId":18255,"journal":{"name":"MatSciRN: Process & Device Modeling (Topic)","volume":"110 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rheology and Flow of Complex Fluids: Fundamental and Experimental Aspects\",\"authors\":\"A. Maazouz\",\"doi\":\"10.2139/ssrn.3639136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study of the rheological behavior of complex fluids in relation to their molecular structure is a primary tool to predict their flow behavior. Such study is often conducted under high shear gradients equivalent to those present in the processes. The ultimate goal of this paper is to introduce the fundamental aspects of shear rheology. The experimental aspects include showing how to establish flow curves (stress versus shear gradients or viscosity versus shear gradients) necessary for any numerical simulation of the flows.\",\"PeriodicalId\":18255,\"journal\":{\"name\":\"MatSciRN: Process & Device Modeling (Topic)\",\"volume\":\"110 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MatSciRN: Process & Device Modeling (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3639136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MatSciRN: Process & Device Modeling (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3639136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rheology and Flow of Complex Fluids: Fundamental and Experimental Aspects
The study of the rheological behavior of complex fluids in relation to their molecular structure is a primary tool to predict their flow behavior. Such study is often conducted under high shear gradients equivalent to those present in the processes. The ultimate goal of this paper is to introduce the fundamental aspects of shear rheology. The experimental aspects include showing how to establish flow curves (stress versus shear gradients or viscosity versus shear gradients) necessary for any numerical simulation of the flows.