{"title":"基于Sugeno模糊推理系统的遥感影像土地覆盖分类","authors":"Jenicka S.","doi":"10.4018/978-1-5225-7033-2.ch057","DOIUrl":null,"url":null,"abstract":"Accuracy of land cover classification in remotely sensed images relies on the features extracted and the classifier used. Texture features are significant in land cover classification. Traditional texture models capture only patterns with discrete boundaries whereas fuzzy patterns need to be classified by assigning due weightage to uncertainty. When remotely sensed image contains noise, the image may have fuzzy patterns characterizing land covers and fuzzy boundaries separating land covers. So a fuzzy texture model is proposed for effective classification of land covers in remotely sensed images and the model uses Sugeno Fuzzy Inference System (FIS). Support Vector Machine (SVM) is used for precise and fast classification of image pixels. Hence it is proposed to use a hybrid of fuzzy texture model and SVM for land cover classification of remotely sensed images. In this chapter, land cover classification of IRS-P6, LISS-IV remotely sensed image is performed using multivariate version of the proposed texture model.","PeriodicalId":54004,"journal":{"name":"International Journal of Agricultural and Environmental Information Systems","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sugeno Fuzzy-Inference-System-Based Land Cover Classification of Remotely Sensed Images\",\"authors\":\"Jenicka S.\",\"doi\":\"10.4018/978-1-5225-7033-2.ch057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accuracy of land cover classification in remotely sensed images relies on the features extracted and the classifier used. Texture features are significant in land cover classification. Traditional texture models capture only patterns with discrete boundaries whereas fuzzy patterns need to be classified by assigning due weightage to uncertainty. When remotely sensed image contains noise, the image may have fuzzy patterns characterizing land covers and fuzzy boundaries separating land covers. So a fuzzy texture model is proposed for effective classification of land covers in remotely sensed images and the model uses Sugeno Fuzzy Inference System (FIS). Support Vector Machine (SVM) is used for precise and fast classification of image pixels. Hence it is proposed to use a hybrid of fuzzy texture model and SVM for land cover classification of remotely sensed images. In this chapter, land cover classification of IRS-P6, LISS-IV remotely sensed image is performed using multivariate version of the proposed texture model.\",\"PeriodicalId\":54004,\"journal\":{\"name\":\"International Journal of Agricultural and Environmental Information Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Agricultural and Environmental Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-5225-7033-2.ch057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Agricultural and Environmental Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-5225-7033-2.ch057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Sugeno Fuzzy-Inference-System-Based Land Cover Classification of Remotely Sensed Images
Accuracy of land cover classification in remotely sensed images relies on the features extracted and the classifier used. Texture features are significant in land cover classification. Traditional texture models capture only patterns with discrete boundaries whereas fuzzy patterns need to be classified by assigning due weightage to uncertainty. When remotely sensed image contains noise, the image may have fuzzy patterns characterizing land covers and fuzzy boundaries separating land covers. So a fuzzy texture model is proposed for effective classification of land covers in remotely sensed images and the model uses Sugeno Fuzzy Inference System (FIS). Support Vector Machine (SVM) is used for precise and fast classification of image pixels. Hence it is proposed to use a hybrid of fuzzy texture model and SVM for land cover classification of remotely sensed images. In this chapter, land cover classification of IRS-P6, LISS-IV remotely sensed image is performed using multivariate version of the proposed texture model.