{"title":"第三方领域生态系统的拓扑和几何","authors":"Costas Iordanou, Fragkiskos Papadopoulos","doi":"10.1145/3577929.3577932","DOIUrl":null,"url":null,"abstract":"Over the years, web content has evolved from simple text and static images hosted on a single server to a complex, interactive and multimedia-rich content hosted on different servers. As a result, a modern website during its loading time fetches content not only from its owner's domain but also from a range of third-party domains providing additional functionalities and services. Here, we infer the network of the third-party domains by observing the domains' interactions within users' browsers from all over the globe. We find that this network possesses structural properties commonly found in complex networks, such as power-law degree distribution, strong clustering, and small-world property. These properties imply that a hyperbolic geometry underlies the ecosystem's topology. We use statistical inference methods to find the domains' coordinates in this geometry, which abstract how popular and similar the domains are. The hyperbolic map we obtain is meaningful, revealing the large-scale organization of the ecosystem. Furthermore, we show that it possesses predictive power, providing us the likelihood that third-party domains are co-hosted; belong to the same legal entity; or merge under the same entity in the future in terms of company acquisition. We also find that complementarity instead of similarity is the dominant force driving future domains' merging. These results provide a new perspective on understanding the ecosystem's organization and performing related inferences and predictions.","PeriodicalId":50646,"journal":{"name":"ACM Sigcomm Computer Communication Review","volume":"19 1","pages":"12 - 25"},"PeriodicalIF":2.2000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Topology and Geometry of the Third-Party Domains Ecosystem\",\"authors\":\"Costas Iordanou, Fragkiskos Papadopoulos\",\"doi\":\"10.1145/3577929.3577932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the years, web content has evolved from simple text and static images hosted on a single server to a complex, interactive and multimedia-rich content hosted on different servers. As a result, a modern website during its loading time fetches content not only from its owner's domain but also from a range of third-party domains providing additional functionalities and services. Here, we infer the network of the third-party domains by observing the domains' interactions within users' browsers from all over the globe. We find that this network possesses structural properties commonly found in complex networks, such as power-law degree distribution, strong clustering, and small-world property. These properties imply that a hyperbolic geometry underlies the ecosystem's topology. We use statistical inference methods to find the domains' coordinates in this geometry, which abstract how popular and similar the domains are. The hyperbolic map we obtain is meaningful, revealing the large-scale organization of the ecosystem. Furthermore, we show that it possesses predictive power, providing us the likelihood that third-party domains are co-hosted; belong to the same legal entity; or merge under the same entity in the future in terms of company acquisition. We also find that complementarity instead of similarity is the dominant force driving future domains' merging. These results provide a new perspective on understanding the ecosystem's organization and performing related inferences and predictions.\",\"PeriodicalId\":50646,\"journal\":{\"name\":\"ACM Sigcomm Computer Communication Review\",\"volume\":\"19 1\",\"pages\":\"12 - 25\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Sigcomm Computer Communication Review\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3577929.3577932\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Sigcomm Computer Communication Review","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3577929.3577932","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Topology and Geometry of the Third-Party Domains Ecosystem
Over the years, web content has evolved from simple text and static images hosted on a single server to a complex, interactive and multimedia-rich content hosted on different servers. As a result, a modern website during its loading time fetches content not only from its owner's domain but also from a range of third-party domains providing additional functionalities and services. Here, we infer the network of the third-party domains by observing the domains' interactions within users' browsers from all over the globe. We find that this network possesses structural properties commonly found in complex networks, such as power-law degree distribution, strong clustering, and small-world property. These properties imply that a hyperbolic geometry underlies the ecosystem's topology. We use statistical inference methods to find the domains' coordinates in this geometry, which abstract how popular and similar the domains are. The hyperbolic map we obtain is meaningful, revealing the large-scale organization of the ecosystem. Furthermore, we show that it possesses predictive power, providing us the likelihood that third-party domains are co-hosted; belong to the same legal entity; or merge under the same entity in the future in terms of company acquisition. We also find that complementarity instead of similarity is the dominant force driving future domains' merging. These results provide a new perspective on understanding the ecosystem's organization and performing related inferences and predictions.
期刊介绍:
Computer Communication Review (CCR) is an online publication of the ACM Special Interest Group on Data Communication (SIGCOMM) and publishes articles on topics within the SIG''s field of interest. Technical papers accepted to CCR typically report on practical advances or the practical applications of theoretical advances. CCR serves as a forum for interesting and novel ideas at an early stage in their development. The focus is on timely dissemination of new ideas that may help trigger additional investigations. While the innovation and timeliness are the major criteria for its acceptance, technical robustness and readability will also be considered in the review process. We particularly encourage papers with early evaluation or feasibility studies.