量子雷达与噪声雷达

K. Lukin
{"title":"量子雷达与噪声雷达","authors":"K. Lukin","doi":"10.1109/MSMW.2016.7538137","DOIUrl":null,"url":null,"abstract":"Preliminary results of the comparative analysis of Quantum Radar (QR) based upon quantum entanglement phenomenon and Noise Radar (NR) based upon classical coherence notion and correlation processing of random signals are presented in the paper. It has been shown that the basic idea of entangled multi-photon QR for simultaneous implementing of high penetrating ability of the entangled photons and high spatial resolution performance does not work because of decay of entangled state of the transmitted photons when they hits a wall, for example. QR operation abilities may be described in terms of classical physics. In addition, the multi-photon QR has been modeled by means of classically phase locked multi-frequency signals (regular and chaotic). Results of computer simulation of basic properties for such radar are presented.","PeriodicalId":6504,"journal":{"name":"2016 9th International Kharkiv Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW)","volume":"240 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Quantum Radar vs Noise Radar\",\"authors\":\"K. Lukin\",\"doi\":\"10.1109/MSMW.2016.7538137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Preliminary results of the comparative analysis of Quantum Radar (QR) based upon quantum entanglement phenomenon and Noise Radar (NR) based upon classical coherence notion and correlation processing of random signals are presented in the paper. It has been shown that the basic idea of entangled multi-photon QR for simultaneous implementing of high penetrating ability of the entangled photons and high spatial resolution performance does not work because of decay of entangled state of the transmitted photons when they hits a wall, for example. QR operation abilities may be described in terms of classical physics. In addition, the multi-photon QR has been modeled by means of classically phase locked multi-frequency signals (regular and chaotic). Results of computer simulation of basic properties for such radar are presented.\",\"PeriodicalId\":6504,\"journal\":{\"name\":\"2016 9th International Kharkiv Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW)\",\"volume\":\"240 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 9th International Kharkiv Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MSMW.2016.7538137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 9th International Kharkiv Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSMW.2016.7538137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文给出了基于量子纠缠现象的量子雷达(QR)与基于经典相干概念和随机信号相关处理的噪声雷达(NR)的初步对比分析结果。研究表明,同时实现纠缠光子的高穿透能力和高空间分辨率性能的纠缠多光子QR的基本思想是行不通的,因为传输的光子在撞击墙壁时纠缠态会衰减。QR运算能力可以用经典物理来描述。此外,还利用经典锁相多频信号(规则和混沌)对多光子QR进行了建模。给出了该雷达基本性能的计算机模拟结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum Radar vs Noise Radar
Preliminary results of the comparative analysis of Quantum Radar (QR) based upon quantum entanglement phenomenon and Noise Radar (NR) based upon classical coherence notion and correlation processing of random signals are presented in the paper. It has been shown that the basic idea of entangled multi-photon QR for simultaneous implementing of high penetrating ability of the entangled photons and high spatial resolution performance does not work because of decay of entangled state of the transmitted photons when they hits a wall, for example. QR operation abilities may be described in terms of classical physics. In addition, the multi-photon QR has been modeled by means of classically phase locked multi-frequency signals (regular and chaotic). Results of computer simulation of basic properties for such radar are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信