Z Xiong, Q W Luo, D L Xiong, K H Cui, S B Peng, J L Huang
{"title":"在水稻中,光诱导气孔运动的速度与初始和最终气孔导度无关","authors":"Z Xiong, Q W Luo, D L Xiong, K H Cui, S B Peng, J L Huang","doi":"10.32615/ps.2022.013","DOIUrl":null,"url":null,"abstract":"<p><p>In nature, plants are often confronted with wide variations in light intensity, which may cause a massive carbon loss and water waste. Here, we investigated the response of photosynthetic rate and stomatal conductance to fluctuating light among ten rice genotypes and their influence on plant acclimation and intrinsic water-use efficiency (WUE<sub>i</sub>). Significant differences were observed in photosynthetic induction and stomatal kinetics across rice genotypes. However, no significant correlation was observed between steady-state and non-steady-state gas exchange. Genotypes with a greater range of steady-state and faster response rate of the gas exchange showed stronger adaptability to fluctuating light. Higher stomatal conductance during the initial phase of induction had little effect on the photosynthetic rate but markedly decreased the plant WUE<sub>i</sub>. Clarification of the mechanism influencing the dynamic gas exchange and synchronization between photosynthesis and stomatal conductance under fluctuating light may contribute to the improvement of photosynthesis and water-use efficiency in the future.</p>","PeriodicalId":20157,"journal":{"name":"Photosynthetica","volume":"220 1","pages":"350-359"},"PeriodicalIF":2.1000,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558595/pdf/","citationCount":"0","resultStr":"{\"title\":\"Speed of light-induced stomatal movement is not correlated to initial or final stomatal conductance in rice.\",\"authors\":\"Z Xiong, Q W Luo, D L Xiong, K H Cui, S B Peng, J L Huang\",\"doi\":\"10.32615/ps.2022.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In nature, plants are often confronted with wide variations in light intensity, which may cause a massive carbon loss and water waste. Here, we investigated the response of photosynthetic rate and stomatal conductance to fluctuating light among ten rice genotypes and their influence on plant acclimation and intrinsic water-use efficiency (WUE<sub>i</sub>). Significant differences were observed in photosynthetic induction and stomatal kinetics across rice genotypes. However, no significant correlation was observed between steady-state and non-steady-state gas exchange. Genotypes with a greater range of steady-state and faster response rate of the gas exchange showed stronger adaptability to fluctuating light. Higher stomatal conductance during the initial phase of induction had little effect on the photosynthetic rate but markedly decreased the plant WUE<sub>i</sub>. Clarification of the mechanism influencing the dynamic gas exchange and synchronization between photosynthesis and stomatal conductance under fluctuating light may contribute to the improvement of photosynthesis and water-use efficiency in the future.</p>\",\"PeriodicalId\":20157,\"journal\":{\"name\":\"Photosynthetica\",\"volume\":\"220 1\",\"pages\":\"350-359\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558595/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photosynthetica\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.32615/ps.2022.013\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photosynthetica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.32615/ps.2022.013","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Speed of light-induced stomatal movement is not correlated to initial or final stomatal conductance in rice.
In nature, plants are often confronted with wide variations in light intensity, which may cause a massive carbon loss and water waste. Here, we investigated the response of photosynthetic rate and stomatal conductance to fluctuating light among ten rice genotypes and their influence on plant acclimation and intrinsic water-use efficiency (WUEi). Significant differences were observed in photosynthetic induction and stomatal kinetics across rice genotypes. However, no significant correlation was observed between steady-state and non-steady-state gas exchange. Genotypes with a greater range of steady-state and faster response rate of the gas exchange showed stronger adaptability to fluctuating light. Higher stomatal conductance during the initial phase of induction had little effect on the photosynthetic rate but markedly decreased the plant WUEi. Clarification of the mechanism influencing the dynamic gas exchange and synchronization between photosynthesis and stomatal conductance under fluctuating light may contribute to the improvement of photosynthesis and water-use efficiency in the future.
期刊介绍:
Photosynthetica publishes original scientific papers and brief communications, reviews on specialized topics, book reviews and announcements and reports covering wide range of photosynthesis research or research including photosynthetic parameters of both experimental and theoretical nature and dealing with physiology, biophysics, biochemistry, molecular biology on one side and leaf optics, stress physiology and ecology of photosynthesis on the other side.
The language of journal is English (British or American). Papers should not be published or under consideration for publication elsewhere.