MWCNTs/铜纳米复合材料的导热性和显微硬度

L. Xu, X. H. Chen, X. J. Liu, Y. Yu, Y. R. Wu
{"title":"MWCNTs/铜纳米复合材料的导热性和显微硬度","authors":"L. Xu, X. H. Chen, X. J. Liu, Y. Yu, Y. R. Wu","doi":"10.1109/ISAPM.2011.6105686","DOIUrl":null,"url":null,"abstract":"The effects of dispersion states of carbon nanotubes on thermal conductivity and Micro-hardness of Multi-walled carbon nanotube (MWCNT) reinforced copper nanocomposites were investigated. The nanocomposites were fabricated in a novel method. It involves the synthesis of MWCNT-implanted copper composite spheres and the preparation of the MWCNT/copper bulk materials using vacuum hot pressing and hot rolling. The thermal conductivity of the composites with different concentration of MWCNTs were measured. Although the coefficient of thermal conductivity decreases with the increase of the MWCNT content, it is still high enough to be used as electronic packaging materials even the concentration of MWCNTS in the composite is up to 5 wt%. Furthermore, the microhardness of the nanocomposites are much higher than that of pure copper, which is ascribed to the good dispersion of the MWCNTs in matrix.","PeriodicalId":6440,"journal":{"name":"2011 International Symposium on Advanced Packaging Materials (APM)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Thermal conductivity and microhardness of MWCNTs/copper nanocomposites\",\"authors\":\"L. Xu, X. H. Chen, X. J. Liu, Y. Yu, Y. R. Wu\",\"doi\":\"10.1109/ISAPM.2011.6105686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effects of dispersion states of carbon nanotubes on thermal conductivity and Micro-hardness of Multi-walled carbon nanotube (MWCNT) reinforced copper nanocomposites were investigated. The nanocomposites were fabricated in a novel method. It involves the synthesis of MWCNT-implanted copper composite spheres and the preparation of the MWCNT/copper bulk materials using vacuum hot pressing and hot rolling. The thermal conductivity of the composites with different concentration of MWCNTs were measured. Although the coefficient of thermal conductivity decreases with the increase of the MWCNT content, it is still high enough to be used as electronic packaging materials even the concentration of MWCNTS in the composite is up to 5 wt%. Furthermore, the microhardness of the nanocomposites are much higher than that of pure copper, which is ascribed to the good dispersion of the MWCNTs in matrix.\",\"PeriodicalId\":6440,\"journal\":{\"name\":\"2011 International Symposium on Advanced Packaging Materials (APM)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Symposium on Advanced Packaging Materials (APM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAPM.2011.6105686\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Symposium on Advanced Packaging Materials (APM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAPM.2011.6105686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了碳纳米管分散状态对多壁碳纳米管(MWCNT)增强铜纳米复合材料导热性能和显微硬度的影响。采用新方法制备了纳米复合材料。研究了MWCNT注入铜复合球的合成及真空热压热轧法制备MWCNT/铜块材料。测定了不同MWCNTs浓度的复合材料的导热系数。虽然导热系数随着MWCNTS含量的增加而降低,但即使复合材料中MWCNTS的浓度达到5 wt%,导热系数仍然足够高,可以作为电子封装材料。此外,纳米复合材料的显微硬度远高于纯铜,这归因于MWCNTs在基体中的良好分散。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermal conductivity and microhardness of MWCNTs/copper nanocomposites
The effects of dispersion states of carbon nanotubes on thermal conductivity and Micro-hardness of Multi-walled carbon nanotube (MWCNT) reinforced copper nanocomposites were investigated. The nanocomposites were fabricated in a novel method. It involves the synthesis of MWCNT-implanted copper composite spheres and the preparation of the MWCNT/copper bulk materials using vacuum hot pressing and hot rolling. The thermal conductivity of the composites with different concentration of MWCNTs were measured. Although the coefficient of thermal conductivity decreases with the increase of the MWCNT content, it is still high enough to be used as electronic packaging materials even the concentration of MWCNTS in the composite is up to 5 wt%. Furthermore, the microhardness of the nanocomposites are much higher than that of pure copper, which is ascribed to the good dispersion of the MWCNTs in matrix.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信