用于量化神经网络人工智能内存计算的RRAM阵列与氧化半导体场效应管的单片三维集成

Jixuan Wu, Fei Mo, T. Saraya, T. Hiramoto, M. Kobayashi
{"title":"用于量化神经网络人工智能内存计算的RRAM阵列与氧化半导体场效应管的单片三维集成","authors":"Jixuan Wu, Fei Mo, T. Saraya, T. Hiramoto, M. Kobayashi","doi":"10.1109/VLSITechnology18217.2020.9265062","DOIUrl":null,"url":null,"abstract":"We have monolithically integrated RRAM array with oxide semiconductor channel access transistor in 3D stack, achieved uniform memory characteristics of 1 T1R cells at each layer, and demonstrated basic functionality of XNOR operation as in-memory computing for binary neural network AI applications, for the first time. The impact of RRAM bit error rate on neural network is also investigated. 3D neural network built by this architecture has high potential to enable area-efficient, low-power and low-latency computing.","PeriodicalId":6850,"journal":{"name":"2020 IEEE Symposium on VLSI Technology","volume":"163 7 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"A Monolithic 3D Integration of RRAM Array with Oxide Semiconductor FET for In-memory Computing in Quantized Neural Network AI Applications\",\"authors\":\"Jixuan Wu, Fei Mo, T. Saraya, T. Hiramoto, M. Kobayashi\",\"doi\":\"10.1109/VLSITechnology18217.2020.9265062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have monolithically integrated RRAM array with oxide semiconductor channel access transistor in 3D stack, achieved uniform memory characteristics of 1 T1R cells at each layer, and demonstrated basic functionality of XNOR operation as in-memory computing for binary neural network AI applications, for the first time. The impact of RRAM bit error rate on neural network is also investigated. 3D neural network built by this architecture has high potential to enable area-efficient, low-power and low-latency computing.\",\"PeriodicalId\":6850,\"journal\":{\"name\":\"2020 IEEE Symposium on VLSI Technology\",\"volume\":\"163 7 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Symposium on VLSI Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSITechnology18217.2020.9265062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSITechnology18217.2020.9265062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

我们在3D堆栈中实现了带有氧化物半导体通道接入晶体管的单片集成RRAM阵列,实现了每层1个T1R单元的统一存储特性,并首次演示了XNOR操作作为二进制神经网络人工智能应用的内存计算的基本功能。研究了随机存储器误码率对神经网络的影响。该架构构建的三维神经网络在实现面积高效、低功耗和低延迟计算方面具有很高的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Monolithic 3D Integration of RRAM Array with Oxide Semiconductor FET for In-memory Computing in Quantized Neural Network AI Applications
We have monolithically integrated RRAM array with oxide semiconductor channel access transistor in 3D stack, achieved uniform memory characteristics of 1 T1R cells at each layer, and demonstrated basic functionality of XNOR operation as in-memory computing for binary neural network AI applications, for the first time. The impact of RRAM bit error rate on neural network is also investigated. 3D neural network built by this architecture has high potential to enable area-efficient, low-power and low-latency computing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信